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ABSTRACT. The complexity of urban systems makes it difficult to adequately address their changes using a 
model based on a single approach. In this research, we developed a GIS-based integrated approach to modeling 
and prediction of urban growth in terms of land use change. The model was built upon a binomial logistic 
framework, coupled with a rule-based suitability module and focus group involvement, and is designed to predict 
land transition probabilities and simulate urban growth under different scenarios. The model was calibrated in the 
Charleston region of South Carolina through a GIS-facilitated participatory process involving both statistical 
assessment and human evaluation. The model achieved high overall success rates, although its predictive power 
varied spatially and temporally with different types of land use. The model was used to predict future urban 
growth in the region through the year 2030. 

INTRODUCTION Although urban growth is perceived as necessary for a 
sustainable economy, uncontrolled or sprawling urban 
growth causes various problems. Not only does urban 
sprawl rapidly consume precious rural land resources 
at the urban fringe, but it also results in landscape 
alteration, environmental pollution, traffic congestion, 
infrastructure pressure, rising taxes, and neighborhood 
conflicts. All these have become public concerns, 
because South Carolina is targeted as one of the top 
seven retirement states and urban growth continues at 
a rapid pace. How large will the city become over the 
next 30 years? Where will the new urban areas be 
located? What are the consequences of future urban 
growth? What are the policy implications of new 
growth? What should be done now to avoid or mitigate 
negative impacts in the future? Unfortunately, there 
are as yet no answers to these questions. No urban 
growth prediction has been made at the regional level 
in the entire state of South Carolina. Without 
information generated from reliable predictions, 
discussions or debates on these issues will remain at a 
superficial level.  

Historically, South Carolina has experienced little 
growth. In its early existence, it was an essential 
agricultural asset to the United States. However, 
following the Civil War, its growth stagnated for 
almost a century. In the 1950s and 1960s, South 
Carolina, and many other regions of the United States, 
experienced suburban growth at the expense of rural 
areas and towns (Frey and Speare 1988, Long 1988). 
This form of urbanization increased dramatically in the 
1970s as immigration began to overtake natural 
increases as the major force for local population 
changes (Brown and Wardwell 1980). This trend has 
accelerated over the last two decades, particularly in 
the coastal regions. A recent change detection study 
(BCD COG, 1997) shows that, during a 21-year period 
from 1973 to 1994, urban area in the Charleston 
region, consisting of the three coastal counties of 
Berkeley, Charleston, and Dorchester (BCD), grew by 
256% while population increased by only 41%. From 
1960–1990, urban growth far exceeded population 
growth at a ratio of 6.2:1, almost triple the national 
average (2.3:1). The average annual growth rate of this 
region is 7.24%, four and a half times greater than the 
U.S. average (1.33%) (Rusk et al. 1997).  

This research, building upon a previous land-use 
change detection study, was initiated to model and 
predict future urban growth in the Charleston region. 
Its objectives are to: a) develop an operational model 
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for regional urban land use change; b) simulate future 
urban growth in the region based on different 
scenarios; and c) predict spatial extents of future urban 
expansions through to the year 2030.  

Quantified, visualized, and spatial information on 
future urban growth obtained through this research 
will benefit decision-making regarding planning, 
environmental impact studies, and general public 
education.  

Urban land use modeling 

Urban growth modeling and prediction history 
essentially started in the 1950s, showed less activity in 
the 1970s and 1980s, but has been revived vigorously 
in the 1990s, thanks to the improvement in spatial data 
availability and advancements in computer 
technologies and geographic information systems 
(GIS) (Wegener 1994). Conflicting views of urban 
systems (simple vs. complex, static vs. dynamic, 
ordered vs. chaotic, physical vs. informational, closed 
vs. open) have led to a variety of different growth 
theories and models (Wegener 1994, Southworth 
1995). Most conventional deterministic models are 
meaningful (semantics) and operational, but tend to 
oversimplify the urban reality by not using enough 
entities and variables (Sui 1997). Successful modeling 
practices are yet to be reported. The innovative 
mathematic models, on the other hand, emphasize 
syntax and urban dynamics, but are difficult to 
interpret. Their use is still mostly confined to 
academia. To date, urban modeling and growth 
prediction remain largely on the frontier of the urban 
studies field and need further exploration.  

Advances in modeling science and predictive 
methodologies rely on continued improvement in such 
aspects as model design, variable selection, data 
quality, and unit of analysis. Urban land use systems 
are complex systems with components, factors, and 
agents from both natural systems related to land 
resources and human systems related to land uses. This 
implies that a holistic or integrated approach is more 
appropriate for model design. However, it is 
impossible to embrace all of these elements within a 
single model. In essence, all models, simple or 
sophisticated, are just simplified representations of a 
complex reality. Essential to a successful modeling 
process is the identification of key variables (or 
components) and their interrelations that truthfully 
represent the urban reality. This certainly necessitates 

the use of statistical methods such as logistic 
regression (Landis 1995, Allen et al. 2002). In fact, of 
about 20 models listed by Wegener (1994) and 
Southworth (1995), few have been fully validated with 
empirical data from other areas using a statistical 
method. In addition, changes in an urban land use 
system display both regularity and irregularity in 
temporal rate and spatial patterns. Identification of the 
rules and their domains (spatial, temporal, and 
environmental) that govern the regular or ordered 
change is crucial to the construction of such rule-based 
models as the cellular automata model (Clarke 1997) 
and the relative probability model (Pijanowski et al. 
1997). Although innovative models are needed to 
address the irregularity that makes accurate long-term 
prediction impossible (Casti 1994), scenario-based 
simulation can provide useful information required for 
land use planning and environmental impact analysis. 
It must be pointed out that there are always some 
intangible variables that cannot be measured and some 
rules that cannot be mathematically expressed, but 
their impacts are well perceived by experienced 
planners or local developers. Therefore, methods are 
needed to incorporate their knowledge into a modeling 
process in order to make a more realistic prediction.  

METHODOLOGY 

This study used a holistic modeling approach, 
integrating certain chosen components from three 
different modeling schemes: a) the logistic regression 
models (Landis 1995) to identify the significant 
variables and rules that differentiate urban or city from 
rural and forest environments; (b) the relative 
probability model (Pijanowski et al. 1997) which uses 
spatial interactions of neighborhood, distance, patch 
size (parcels), and site-specific characteristics; and (c) 
the focus group involvement to create a human input 
layer, set the growth scenarios, evaluate predictions 
and disseminate the information. As shown in Fig. 1, 
the conceptual model framework involves three basic 
procedures. The first predicts urban transition 
probabilities with an array of spatial (containing 
geographic coordinates) data. The second procedure 
sets urban growth scenarios with aspatial (without 
geographic coordinates) data. Combining these two 
procedures yields maps of future urban growth in 
scenario series (different growth ratios) and temporal 
series (growth in each successive year). The modeling 
system was developed as an ArcView Extension® 
(ESRI, Redlands, California, USA) and integrated with 
the SPSS Statistical Software Package (SPSS Inc., 
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Chicago, Illinois, USA). The user interface was 
designed using the Dialog Designer Extension, with 
the functions written in Avenue Script. The model has 
several sub-modules designed for data preparation, 

logistic analysis, growth prediction, error assessment, 
and map generation. All of them are capable of 
processing both binary and multiple land use change 
and prediction. 

 

Fig. 1. Flowchart of the Charleston urban growth model.  
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Data preparation 

Urban land use  

Urban area used in this research is defined as urban or 
built-up land according to Anderson’s land use (man-
made) and land cover (natural or semi-natural) 
classification system for use with remote sensor data 
(Anderson et al. 1976). This land use category includes 
residential, commercial and services, industrial, 
transportation, communication, utilities, industrial and 
commercial complexes, and mixed urban or built-up 
land. Other remaining land uses are grouped into a single 
category as non-urban. The reasons for using this binary 
land use classification are to ensure consistency with the 
previous land use change detection work done in the 
region (BCD COG 1997) and to emphasize urban growth 
as a process of land transformation from natural or semi-
natural, non-urban status to a built-up, man-made urban 
use. The land use data sets were derived from the 
Landsat Multispectral Scanner (MSS) and Thematic 
Mapper (TM) imagery collected approximately every 
alternate year from 1973 to 1994. Therefore, there were 
11 data sets, covering a 21-year period, available for 
model calibration and urban simulation.  

Predictor variable grids  

Certain issues are involved in the preparation of 
predictor grids. For grid-based modeling, all data must 
be converted into grids. Because source data are often 
collected for other purposes, some predictor grids must 
be derived from other grids. This process often 
implicitly involves the use of certain spatial rules. For 
source data collected in years other than the baseline 
years, a linear interpolation method was used to 
estimate the values for the desired year if multiple-
year data sets were available; otherwise, the data set 
closest to the desired date was selected. Even though 
this procedure introduces a concurrency problem, it 
was ruled that imperfect data were better than no data 
in certain instances. In addition, at least two sets of 
predictor grids had to be prepared: one for the year 
1973 for model calibration and another for the year 
1994 for prediction. Planned future projects, such as 
roads, bridges, and utilities, were incorporated into 
their relevant predictor grids in order to reflect their 
effects on future urban growth.  

Units of analysis  

The use of finer grids or smaller units is essential to 

eliminate the “Sin of Grossness” associated with 
conventional modeling practice (Lee 1973). Although 
Landis and Zhang (1997) have described conceptually 
the advantage of using parcels as a base unit of 
analysis over other zonal units, such as traffic analysis 
zones or planning districts, and Lu (2001) and Allen et 
al. (2002) have used parcels for land use change 
assessment and prediction, these data sets (parcels) 
were not available for the Charleston region. 
Consequently, grid units based on initial satellite 
imagery change detections were used as the base unit 
of measurement.  

Three different sizes of grids were used in this 
research for different purposes. All variable grids were 
prepared at 30 x 30 m, equivalent to the spatial 
resolution of the Landsat TM imagery used to derive 
urban land use data. They were resampled at 100 and 
200 m to create table data sets for conducting 
statistical analysis (model calibration) at the county 
and regional levels, respectively. The main purpose 
was to maintain the data sets at manageable sizes, 
while keeping the resolution as high as possible. 
Higher resolution grids (30 x 30 m) were used for the 
final prediction and mapping in order to obtain a better 
visual effect.  

Transition probabilities  

Prediction of urban transition probabilities was 
accomplished using an integrated framework 
composed of a logistic regression model, a rule-based 
model, and a focus group technique.  

Logistic regression model 

For statistical modeling, a multivariate logistic 
regression model was selected to represent the non-
linear nature of urban growth problems (Landis and 
Zhang 1997). This model is a special case of the 
multinomial logit model developed by MacFadden 
(1973) and conceptually based on the random utility 
theory and discrete choice theory in urban economics 
and behavior science. Whether the utility of land is 
measured in terms of consumer benefit, bid-rent, land 
price, or developer’s profit, it is a function of attributes 
of land use choices and characteristics of land 
decision-makers. As in Landis and Zhang’s study 
(1997), the utility function can be defined as a linear 
combination of attributes of land use choices: 
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    [1]
 
with constant α, coefficients β j ( j = 1, 2, · · ·, k), and 
predictors X j for k predictor variables ( j = 1, 2, · · ·, k).  

Once the landowners or developers make their land 
use decisions independently with the objective to 
maximize the utility of their lands, the probability of 
land transition can be calculated in the following 
equation 

      [2]
 
where P i is the estimated probability that the ith land 
cell unit ( i = 1,· · ·, n) is urban and u is the utility 
function usually defined as a linear regression 
equation.  

This linear regression equation creates the logit or log 
of the odds: 

    [3]
 
That is, the linear regression equation is the natural log 
of the probability of being urban divided by the 
probability of being non-urban. The procedure 
employed for estimating coefficients was maximum 
likelihood, with a goal to find the best linear 
combination of predictors to maximize the likelihood 
of obtaining the observed outcome of land use 
frequencies. Compared with the multinomial logit 
model, this binary logistic model is extremely flexible 
and easily applicable (Hosmer and Lemeshow 1989).  

In this model developed for the Charleston region, 15 
independent variables, derived from a larger initial set of 
variables, were used to measure physical suitability, 
accessibility to infrastructure and facilities, market 
factors, policy constraints, and initial conditions. These 
variables include 1) forest, slope, wetland, and distance 
to waterfront; 2) distance to major roads, distance to 
major node, road density, distance to waterline, and 
distance to sewer line; 3) population density and cost 
distance to central business district; 4) existing urban and 
distance to existing urban; and 5) corporate boundary and 
protected land. The selection of variables was 
significantly constrained by the limited availability of 
spatial data when the project began.  

Four separate models were built for the whole 
Charleston region and its three counties. All four were 

calibrated using data from 1973 and 1994. They 
allowed not only logistic regression analysis on each 
individual model, but also an examination of the 
spatial variation of the effectiveness of the same 
logistic framework and the spatial differentiation of 
the effect of each independent variable. The result 
obtained was used to select the most appropriate 
approach or model for the final prediction. In addition 
to the statistical evaluation, the study compared the 
maps of observed urban and predicted urban in 1994 to 
assess the error distribution among different models 
and counties. This map-based visual analysis helped us 
evaluate the predictive power of the models in relation 
to different land use patterns.  

In addition to the above error and accuracy 
assessment, the regional model was validated using a 
time-series data set for 1975, 1981, 1985, 1989, and 
1994 at approximately 5-year intervals. With 
coefficients derived from the 1973–1994 data sets, the 
urban area for each of the 5 years was predicted and 
compared with the observed ones. This method 
allowed us to examine the reliability of the logistic 
model over time and test the implied assumption that 
the relationships revealed by the historical data will 
hold over different time spans.  

Rule-based model 

A rule-based model was developed to further enhance 
the prediction. This model was designed for many 
reasons. First, the logistic regression model, like all 
other empirical models, relies on historical data for 
calibration. It cannot reflect the effects of new land use 
policies. A rule-based model has the flexibility to 
incorporate these factors for future prediction. Second, 
previous studies (Landis and Zhang 1997, Allen et al. 
2002) have shown that prediction success rates of 
logistic models vary substantially (from less than 30% 
to more than 90%) across geographical regions and 
across land use categories (Lu 2001). It is appropriate 
to have an alternative model if the logistic model 
generates low success rates and its reliability for 
prediction is doubtful. Third, a rule-based model, if 
constructed properly, can generate important 
information, such as building capacity, development 
potential, infill land, and building suitability (Kaiser et 
al. 1995). This information is very important to land 
use decision-making. Finally, the suitability concept is 
familiar to many planners and several GIS systems 
have model builders that can facilitate the modeling 
process.  
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Fig. 2. Structure and algorithms of the rule-based suitability model. 

  

 
 

 

A hierarchical rule-based model was built to derive 
relative land suitabilities for urban development (Fig. 
2). The rules for rating, ranking, and weighting 
variables were also grouped into five categories, 
similar to those independent variables used in the 
logistic model. Physical suitability rules reflect the on-
site relationships between land properties and urban 
development. Although other human factors play their 
roles in urban development, physical features are the 
fundamental determinant for the urban landscape, 
particularly in water–wetland separated coastal areas 
or relief-constrained areas. Access orientation rules 
reflect the off-site effects of infrastructures, facilities, 
utilities, or services, which are reverse functions of 

distance and often cause urban space to have linear 
characteristics. Market orientation rules influence 
where new urban areas will grow faster when demand 
(population, employment, or housing) is relatively 
high but land price is relatively low. The urban-to-
urban rule assumes that initial urban will remain urban 
in the future and land use change from natural to urban 
is unidirectional. Policy constraint rules guarantee that 
environmentally important lands (including national 
forest land, natural reserves and wildlife refuges, state 
and county parks and other public land, and private 
land with easement) will be protected from urban 
development, and urban development is also precluded 
in environmentally hazardous areas.  
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The modeling process involves five steps. First, like 
Pijanowski’s (1997) relative probability model, most 
variable grids need to be reclassified into ordinal 
categories based on their suitability for urban 
development. In this research, a 0–10 scale was used 
for the classifications, but each ranked grid (R ij) was 
divided by its maximum value so that its range falls 
between 0 and 1. Next, the weight factor (w ij) and the 
exponential factor (k) are assigned to each ranked grid 
according to the researchers’ knowledge, interactive 
assessment by the focus group, and the result of the 
significance test of predictors from the logistic model. 
Then, the total ranked suitability score (Σw ijRk

ij) is 
calculated for each land unit (i) and subsequently 
divided by the maximum score (max (Σw ijRk

ij)) found 
in the region to generate a relative urban transition 
probability ranging between 0 and 1. Following this, 
all binary grids (E im) that represent land units 
unsuitable for urban development due to physical or 
policy constraints are merged into one grid whose 
complement is used to multiply the relative probability 
grid so that these land units are excluded from urban 
development. Finally, the current urban grid (U i) is 
overlaid on the resulting grid generated by the above 
process, so that current urban units remain urban in the 
future. Therefore, the relative urban transition 
probability Prob(i) in terms of ranked suitability with 
constraints can be calculated based on the following 
formula. 

 
Focus group mapping 

A focus group approach was used in this research to 
overcome the deficiency of computer-based artificial 
intelligence. Due to the complexity of land use 
systems, many factors or variables cannot be defined 
or measured, or their relationships cannot be modeled, 
but their overall intangible effects may well be 
perceived by people, particularly local planners, 
developers or experts with years of experience. In this 
sense, computer-aided land use modeling is not 
necessarily superior to human-based prediction (Lee 
1994). Proper use of a focus group, a collection of the 
best information processor-human brains, will improve 
the realism of urban growth prediction.  

The focus group consisted of local experts, planners, 
developers, landowners, conservationists, and 
community leaders who have a profound knowledge of 

the region and urban growth factors. Group sessions 
were organized in different formats (interviews, 
meetings, and workshops) to accomplish three tasks: 
a) collect public opinion on urban development to map 
areas that are most likely to be developed by year 
2030; b) evaluate the results of computer-based 
logistic and suitability predictions; and c) disseminate 
information about possible future urban growth or 
urban sprawl.  

At the initial stage, the members of the focus group were 
provided with a base map of the Charleston region and 
urban land use maps. Each member was asked to mark 
on the maps or describe the possible urban area or 
boundary for the next 30 years based on his or her 
personal knowledge, experience, and intuition. These 
urban areas were digitized to create a map of the future 
urban boundary. The map was modified later to reflect 
subsequent predictions during and after evaluation 
meetings. Although no attempt was +made to 
differentiate the development probability within the 
projected urban area, water bodies and wetlands were 
excluded later to make it more realistic.  

Integrated model 

The outputs of the above three models were linearly 
combined in an integrated model to generate a hybrid 
transition probability grid for the final prediction. The 
integrated model is intended to retain the insight into 
urban growth as predicted by the focus group, to 
reflect the effects of new policy factors in the rule-
based model, and to maintain the objectivity of the 
logistic model.  

  [4]

A trial and error method was used to determine the 
weight factors of the integrated model. Statistical 
methods were considered inappropriate in this case as 
the three sub-models were developed based on 
different assumptions and for different purposes. 
Initially, the three outputs were weighted equally. The 
focus group prediction proved to be too strong and 
became even stronger as the prediction went further 
into the future. This is mainly because probabilities 
predicted by the logistic suitability models diminish 
very quickly with distance to the existing urban area, 
but the focus group prediction is basically a constant. 
After several trials, the weight of the focus group 
prediction was reduced to 10% and the other two 
predictions were weighted at 45% each. This weight 
combination appeared to eliminate the strong effect of 
the arbitrary boundary of the focus group prediction, 
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yet retain the detailed spatial differentiations of 
transition probabilities predicted by the logistic and 
rule-based models. The latter allows modelers to map 
the spatial extents of future urban growth based on 
different scenarios with relatively small intervals of 
change in both probability and urban area. As urban 
area continues to grow, areas with very low transition 
probabilities become urban. Consequently, a 10% 
change in the probabilities, which involves a large land 
area, is sufficient to differentiate future urban areas 
from other lands.  

Growth scenarios 

Growth scenarios are the primary assumptions upon 
which predictions are based. The use of multiple growth 
scenarios allows us to simulate different urban growth 
processes, even with aspatial data. Growth scenarios can 
be expressed implicitly or explicitly as policy constraints, 
growth rules, growth rates, urban sizes, and the like. In 
this project, we used different growth ratios as growth 
scenarios to determine future urban sizes.  

Concept of growth ratio  

Growth ratio, sometimes called sprawl index or sprawl 
scatter index, is defined as the ratio of urban area 
growth to urban population growth measured as a 
percentage. It can be calculated using the following 
formula: 

    [5]
 
where r is the growth ratio; P0 is the start-year 
population; P1 is the end-year population; A0 is the 
start-year urban area; and A1 is the end-year urban 
area. Urban size A1 in area is determined by the 
equation: 

    [6]
 
where urban size A1 depends on the future population 
P1 and the ratio, r, for both A0 and P0 is given.  

Different growth ratios were chosen as growth 
scenarios for two reasons. First, the concept has been 
widely used in the literature of urban growth studies 
and in actual land use planning. It is particularly 
familiar to the planning community in the Charleston 
region because of the aforementioned change detection 
study. Second, a growth ratio reflects the relationship 
between population growth and urban area 

consumption. The former is the fundamental force that 
drives urban land use change, especially in the 
Charleston region, which mainly consists of tourism 
and residential communities; the latter has a significant 
implication for ecological conservation.  

Selection of growth scenarios  

It was assumed that population in the Charleston 
region will grow by 49% from 532,688 persons in 
1994 to 795,879 persons in 2030 as predicted by the 
BCD regional council of government (BCD COG 
1997) with information from the U.S. Census Bureau 
and the South Carolina State Budget Control Board. 
With this assumption, future urban size will depend 
only on the growth ratio.  

Four factors were taken into account in selecting 
growth ratios. These factors include the internal 
historical growth trend, change in external driving 
forces, focus group output, and regional physical 
capacity. It was originally assumed that the historical 
trend revealed by the change detection study will 
continue through 2030, that is a 6:1 growth ratio will 
remain unchanged for the prediction period. After 
detailed discussion with planners and other interest 
groups, a more conservative ratio of 5:1 was selected 
as the most plausible scenario. This ratio was 
considered relatively conservative by many local 
planners. Higher ratios have been observed since 1994 
in the faster growing Mt. Pleasant and Summerville 
areas. National growth rates for population and urban 
area expansion support this notion. According to Rusk 
et al. (1997), many metropolitan areas such as Detroit 
(13:1), St. Louis (7:1), and Baltimore (5:1), although 
not necessarily indicative of high growth areas, have 
seen similar or higher ratios between 1960 and 1990, 
over an even longer period than the one used in this 
study. However, the future ratio should not reach the 
same values, as historical and current urban area and 
population growth rates exhibit moderate patterns.  

At a 5:1 ratio, total urban area will grow by 245%, 
from 250.07 square miles to 868.55 square miles by 
2030, if the above population projection holds. 
However, demanded urban areas were also calculated 
using growth ratios from 1:1 to 6:1 for each of the next 
35 years. These values were used to map future urban 
extents. Although only one population projection was 
used in the growth scenarios, the effect of the variation 
in population growth was implicitly left for different 
growth ratios to account for.  

 
 

http://www.consecol.org/vol8/iss2/art2


Conservation Ecology 8(2): 2. 
http://www.consecol.org/vol8/iss2/art2 

 

 

Table 1. Goodness of fits and prediction success rates of the logistic regression models. 

Statistical Item BCD Region Berkeley Charleston Dorchester 

-2 Log Likelihood 39924.761 9574.200 11913.087 3932.024 
Cox and Snell – R2 0.312 0.150 0.379 0.310 
Nagelkerke – R2 0.559 0.366 0.690 0.539 
Prediction Success Rate (%) 
Max. Probability (> 0.5) Classification 
Urban 54.35 28.69 67.05 54.40 
Non-urban 98.53 99.45 98.73 97.77 
Overall 92.26 94.19 94.40 91.30 
Case-Constrained Classification (%)     
Urban 65.31 49.17 77.10 59.36 
Non-urban 96.11 95.83 95.92 96.69 
Overall 93.14 92.37 93.33 93.98 

 

Urban extents 

Mapping the spatial extent of future urban area was one 
of the primary tasks of this research. An urban extent is 
determined by the predicted urban transition probabilities 
and the chosen growth scenario. It is assumed that the 
spatial sequence of future urban development will follow 
the order determined by transition probabilities: the 
higher the transition probability, the earlier the 
development of the land cell. Under this assumption, 
mapping urban extents is a recursive process in which 
land cells are sequentially selected following their 
transition probabilities in descending order, until their 
total accumulated area meets the size of the demanded 
urban area under certain growth scenarios for a specific 
year. Three series of maps of the predicted future urban 
extents were generated as a result of this research. These 
series include maps for four prediction models, maps for 
six scenarios, and maps for each year from 1995 to 2030.  

The model-series maps were generated mainly to 
compare the prediction results between different 
models and to select the best-fit model for the final 
prediction. The scenario-series maps not only provide 
valid information needed for policy-making and 

planning for growth measurement but also facilitate 
the process of selecting the most plausible growth 
scenario and the best prediction for the future urban 
extent. The time-series maps allow the researchers and 
the focus group to examine future urban growth from 
scenario–spatial–temporal dimensions. They show 
when and where land will be converted to urban use 
under a given scenario. A series of animated imageries 
were created to simulate the future urban growth 
process in the region.  

RESULTS 

The results of the research are reported in three parts: 
the performance of the integrated model and sub-
models tested against the historical data; the focus 
group evaluation of the future prediction; and more 
importantly, the predicted urban growth in the 
Charleston region.  

Statistical results 

Table 1 shows the results of the goodness-of-fit tests 
and prediction success rates of the logistic regression 
models built for the region and its three counties. All 
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four models were found to be significantly different 
from the constant-only models (α < 0.05), suggesting 
that the 15 predictors as a whole are statistically 

reliable for the prediction of urban transition 
probabilities in the region. 

 

Table 2. Parameter estimates of the logistic regression model for urban growth in the Charleston region. 

Variable Name B Std. Error Wald Df Sig Exp(B)

Corporate boundary .8593 .0344 623.1468 1 .0000 2.3614
Cost distance to downtown -.0069 .0006 157.1391 1 .0000 .9931
Distance to existing urban -.3459 .0093 1397.0971 1 .0000 .7076
Distance to major roads .0586 .0075 60.8491 1 .0000 1.0603
Distance to node -.0331 .0076 18.8975 1 .0000 .9675
Distance to sewerline .0022 .0041 .2976 1 .5854 1.0022
Distance to waterline .0123 .0056 4.8690 1 .0273 1.0124
Distance to waterfront .0779 .0082 90.9650 1 .0000 1.0811
Existing urban 9.3329 1.3433 48.2683 1 .0000 11304.1474
Forest land -.1587 .0274 33.5493 1 .0000 .8532
Population density .0003 .0001 67.4152 1 .0000 1.0003
Protected land -.8587 .3538 5.8893 1 .0152 .4237
Road density .3060 .0056 2969.6960 1 .0000 1.3580
Slope .0456 .0305 2.2373 1 .1347 1.0466
Wetland -.6463 .0471 188.1043 1 .0000 .5240
CONSTANT -2.4788 .0847 855.8031 1 .0000 .0838

 

With 0.5 as the cut-off value for classification (SPSS’s 
default), the overall prediction success rates of the four 
logistic models were very good (91.30–94.40%). The 
success rates for the non-urban use were high (97.77–
99.45%), but not impressive for the urban use (28.7–
67.1%). However, all four logistic models 
underestimated the urban areas, as they omitted more 
urban cells than non-urban cells. This is 
understandable because the region is still 
predominantly rural. It is relatively difficult to 
differentiate dispersed urban cells from rural 
surroundings. To reduce classification error and to be 
consistent with future prediction, a case-constraint 
method was used to select land cells of higher urban 
transition probability until their area equated the 
observed or demanded value. As a result, classification 
accuracy for urban use was improved by about 5–10%, 

ranging from 49.17–77.10%. Other prediction rates 
remain above 92% with little change.  

Results from both classifications suggest that the 
logistic regression model generates a better prediction 
for urban land use in a more urbanized county 
(Charleston) than in a more rural county (Berkeley or 
Dorchester). The predictive power of the regional 
model is moderate, with an accuracy of 65.31% for 
urban prediction, 96.11% for non-urban prediction, 
and 93.14% for overall prediction. This model was 
chosen for the final prediction in order to keep the 
regional integrity as the tri-county border area is the 
fastest-growing spot in the region and accounts for a 
significant portion of the urban area in the relatively 
rural Berkeley and Dorchester counties.  
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The parameter estimates of the regional model are 
shown in Table 2. All independent variables, except 
for sewer line and slope, were found to be significant 
predictors (α < 0.05) of urban land use. It is easy to 
understand why slope is not a significant factor here; 
the region is located on the flat Atlantic coastal plain. 
Sewer line is a secondary or tertiary factor compared 
with other infrastructures and facilities; its spatial 
extent is largely confined within the scope of the 
existing urban area; and its effect is reduced due to the 

use of septic tanks in the rural area. The significant 
predictors of the regional model include corporate 
boundary, cost distance, distance to major roads, 
distance to transportation node, distance to waterfront, 
distance to waterline, forest land, population density, 
protected land, road density and wetland. According to 
the Wald (Table 2) values, distance to existing urban 
and distance to waterfront, as well as distance to major 
roads, have greater effects on urban development than 
any other distance variables used in the model.  

 

Table 3. Summary of error assessment (%) of the four logistic regression models. 

Statistical Item BCD Region Berkeley Charleston Dorchester 

Max Probability (>0.5) Classification     
Error of Omission     
Urban (to non-urban) 45.65 71.31 32.95 45.60 
Non-urban (to urban) 1.47 0.55 1.27 2.23 
Error of Commission     
Urban (to Non-urban) 16.29 19.36 11.95 17.80 
Non-urban (to urban) 8.11 5.44 5.02 7.64 
Overall Error 7.74 5.81 5.60 8.70 
Case-Constrained Classification     
Error of Omission     
Urban (to Non-urban) 34.69 22.90 50.83 40.64 
Non-urban (to urban) 3.89 4.08 4.17 3.31 
Error of Commission     
Urban (to Non-urban) 3.70 3.68 4.08 3.19 
Non-urban (to urban) 35.88 24.80 51.42 41.53 
Overall Error     
Urban/Non-urban 6.86 6.67 7.63 6.02 

 

It should be pointed out that the effect of each 
predictor varies geographically from one county to 
another. All predictors except slope are statistically 
significant in the model developed for Charleston 
County, whereas protected land is not a significant 
factor in either Dorchester or Berkeley counties. This 
outcome is difficult to understand, particularly in the 
case of Berkeley as it has two large tracts of protected 
lands—Francis Marion National Forest and the Naval 

Weapons Station—located within the county 
boundary. The relatively low level of urbanization in 
these two counties could explain the phenomenon, as 
these protected lands are only smaller portions of the 
vast undeveloped land and their correlation to urban 
land use is not strong. In Dorchester County, distance 
to major roads and distance to waterlines were found 
to be statistically insignificant. The former may also be 
related to the relatively low level of urbanization in 
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this county in that most of the major roads in the 
county run through the rural areas and show little 
statistical association with urban land use. The latter 
may be partly due to incompleteness of data or the 
secondary nature of facilities like sewer lines (Lu 
2001).  

Table 3 provides a statistical summary of commission 
and omission errors of the four models. For urban land 
use, omission error occurs when an urban cell is 
misclassified into the non-urban category; commission 
error occurs when a non-urban cell is misclassified 
into the urban category. With the GIS program, a 
series of error maps were generated for spatial analysis 
of error distribution. Unlike prediction success rates, 

prediction errors increase from the more urbanized 
county to the more rural county; the errors increase 
when urban areas are more fragmented, as well as 
when newly developed land is isolated or far away 
from the preexisting compact urban core areas (Fig. 3). 
It appears that urban areas that were omitted (or 
misclassified as non-urban) are relatively large in size 
and continuous in distribution, while the majority of 
non-urban units that were incorrectly committed as 
urban units are located among the sparsely distributed 
yet clustered, low density areas. Whether these errors 
result from the limitation of the logistic framework or 
the selection of variables and data quality warrants 
further study.  

 

Fig. 3. Comparison of the urban extents predicted using four different methods (sub-models).  

 

The regional model was also validated against the 
historical data collected for each of the 5 years (1975, 
1981, 1985, 1989, 1994) to examine the reliability of 
the logistic model over time. The baseline year was 
1975. The urban extent was predicted for each of the 
testing years and prediction accuracy was assessed 

against the observed urban use. The results (Table 4) 
indicate that, with the exception of the period ending 
in 1989, the accuracy of prediction decreases in all 
three categories, as the projection period gets longer. 
In other words, the logistic model becomes less 
reliable as the projection end year goes further into the 
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future, implying that there is a need for alternative 
models for longer-term prediction. The exception, that 
the prediction is better for 1989 than for 1985, is most 
likely due to the use of the 1990 TIGER road data set 
for generating the road density variable grid, which 

was a significant predictor and thus had a stronger 
effect on the prediction for the closest year. Also, 
prediction accuracy may change with the magnitude or 
pace of net change in the urban area, but such a 
discussion is beyond the scope of this paper.  

 

Table 4. Temporal variation of prediction success rates (%) of the logistic regression model as validated using the regional 
data sets from selected years. 

 Prediction Success Rate for Urban Land Use 
Category 1975 1981 1985 1989 1994 

Urban 88.15 75.89 71.51 73.21 65.31 
Non-urban 99.55 98.96 98.34 98.30 96.10 
Overall 99.20 97.92 96.98 96.67 93.13 

 

Focus group evaluation 

As there is no developed statistical method to evaluate 
predictions of future urban growth, the focus group 
technique was used to make a human intelligence-
based assessment on the prediction error of the rule-
based suitability model, focus group prediction, and 
the final integrated prediction. A total of 38 
participants were organized into five separate meetings 
held over two days to assess the overall prediction and 
select a scenario that they thought the most plausible; 
to identify the newly developed areas since 1994; and 
to mark possible growth areas as they projected. 
Although the purpose of this research is to help 
understand the overall behaviors of urban growth in 
the Charleston area, participants were encouraged to 
comment on the draft maps for the future urban area 
predicted by the four models (methods). For the first 
round of meetings, the prediction based on a scenario 
using a 5:1 ratio was considered the most plausible, 
and the predictions based on higher growth scenarios 
were unanimously denied. The prediction based on the 
integrated GIS model was also considered the best or 
closest to reality. Figure 3 shows the difference in the 
predicted urban area between the four models.  

Spatially, suburban areas closer to previously 
developed urban areas were well predicted, with 

peripheral areas, particularly in Dorchester and 
Berkeley Counties, slightly under-predicted. 
Interestingly enough, no substantial urban area was 
considered over-predicted. Although the assessment 
was mainly qualitative and spatially vague, the 
feedback on the perceived error was very useful for 
model revisions in three ways. First, the identified 
possible urban areas were incorporated into the map of 
the focus group prediction to improve the area-based 
spatial weighting. Second, several key variables, such 
as distance to corporate areas, major roads, road 
density, and population density were used to make 
variable-based weight adjustments so that the core 
areas of perceived urban growth would be correctly 
predicted. Third, several variable grids were modified 
to take into account possible influences from cities, 
roads, and other features located adjacent to the border 
but outside of the Charleston region. Edisto Beach, a 
sea resort town under the jurisdiction of Colleton 
County but with its hinterland in Charleston County 
was eventually added to the study area as an integrated 
part of the Charleston metropolitan system. Later 
versions of maps were generated with the integrated 
model based on the 5:1 ratio and were subject to the 
second and third round of focus group assessments. 
The weights of variables used in the final rule-based 
suitability model are shown in Fig. 2. 
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Table 5. Summary of predicted urban growth in the Charleston region from 1994 to 2030. 

Items BCD Region Berkeley Charleston Dorchester 

Population Growth     
Population 1994 (in person) 532,688 138,776 307,468 86,444 
Population 2030 (in person) 795,879 200,000 469,346 126,533 
Net Growth 263,211 161,224 161,878 40,089 
Change +49.41% +44.12% +52.65% +46.38% 
Annual Growth Rate +1.37% +1.23% +1.46% +1.29% 
Urban Area Growth     
Urban Area 1994 (mile2) 250.07 81.61 126.50 41.96 
Urban Area 2030 (mile2) 867.60 306.41 361.33 199.86 
Net Growth 603.53 224.80 234.83 157.90 
Change +246.94% +275.46% +185.64% +376.31% 
Annual Growth Rate +6.85% +7.65 +5.15% +10.45% 
Population vs. Urban Area     
Population Density 1994 (person/ mile2) 2030 1700 2431 2060 
Population Density 2030 (person/ mile2) 917 652 1299 633 
Change -54.83% -61.65% -46.57% -69.27% 
Per Capita Urban Area 1994 (acres) 0.30 0.38 0.26 0.31 
Per Capita Urban Area 2030 (acres) 0.70 0.98 0.49 1.01 
Change +133.33% +158.03% +88.46% +225.81% 
Sprawl Index (growth ratio) 5:1 6.24:1 3.53:1 8.11:1 

 

Predicted urban growth 

Predicted urban growth in the Charleston region is 
summarized in Table 5. According to the final 
prediction, the total population of the region will 
increase from 532,600 in 1994 to 795,800 in 2030. 
The net growth is about 263,000 people, or 49.41% 
within a 36-year period, about 7, 500 people per year. 
The annual population growth rate is 1.41%. Among 
the three counties in the region, Charleston ranks first 
in terms of net population increase, percentage of 
change, and annual growth rate.  

Within the same period, the urban area is predicted to 
increase by 246.94%, from 250 square miles in 1994 

to 868 square miles in 2030. A little over 17 square 
miles of land will be transformed into urban use each 
year. As the urban area expands at a rate of about 7% 
annually, it takes only 16 years to double its size. This 
means that by 2010, the new urban area will equal and 
even outsize the old urban area that has existed for 
several centuries. Charleston County leads all counties 
in new urban area predicted, even though its growth 
rate is the lowest. Dorchester County, on the other 
hand, tops the region in growth rate but has the 
smallest gain in urban area. Its urban area is most 
likely to triple. The spatial process of future urban 
growth is illustrated in Fig. 4. The simulation of urban 
growth in the region is available on Clemson 
University's Strom Thurmond Institute website. 

http://www.strom.clemson.edu/teams/dctech/urban.html
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Fig. 4. Time-series map of urban growth in the Charleston region from 1973 to 2030 as predicted using a growth ratio of 5:1.  

 

Urban area growth will far exceed population growth 
in terms of percentage of change at a ratio of 5:1 as 
previously mentioned. As a result, urban population 
density in the region will drop significantly, from 2130 
to 917 persons per square mile, while per capita urban 
area will increase from 0.3 to 0.7 acres over this 
period. As predicted, urban area will cover 65% of the 
total land area in the region by the year 2030. 
Dorchester will have the highest growth ratio (8:1), 
while Berkeley will maintain the past regional growth 
trend (6:1). In either case, an urban sprawl is 
predicted. Figure 5 compares the predicted urban 
extents between different growth scenarios.  

Figure 6 shows the spatial distribution of the predicted 
urban extent in the region by the year 2030. Potential 
urban expansion will follow two patterns: a pattern of 
lateral growth along the coast on both sides of the City 
of Charleston and a pattern of landward growth along 
the major roads. Strongly transportation-oriented in 
three directions, physically confined by water and 
wetland, and restricted by the protected land, new 

urban development will spread in rural areas, along the 
existing urban fringes, fill in the gaps in old cities, and 
create a few large urban clusters.  

DISCUSSION 

A good land use model should enhance theory and 
practice (Lee 1994). We believe this research meets 
these criteria. The model was developed with variables 
unique to the prediction of urban growth on the 
Atlantic Coast; it generated quantified spatial 
information needed for urban planning and impact 
analysis; it provided visualized, simulated urban 
growth effective for environmental education; and it 
has raised urban sprawl issues with the public. 
Although each of the three sub-models used in this 
research has been in existence for decades, their 
integration to predict a complex urban system is a new 
endeavor. Several issues and implications are worth 
further discussion.  
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Fig. 5. Scenario-series map of urban growth in the Charleston region as predicted using growth ratios of 1:1–6:1.  

 
 

Modeling issues 

This research has provided a relatively complete test 
of the logistic model. It validated the model using both 
geographically differentiated data sets (for the region 
and the three counties) and temporal series data sets 
(for five different years). The results are congruent 
with those of the previous studies (Landis and Zhang 
1997, Lu 2001, Allen et al. 2002) in that overall 
success rates are high but those for urban use are 
moderate and vary substantially from one geographic 
unit to another. Although the temporal model 
validation used the model calibrated with a data set 
covering a 21-year period and tested against the same 
baseline year 1973, it is obvious that the prediction 
becomes less reliable (from 88.15 to 65.31%) as the 
end year goes further into the future. In other words, 
the logistic model is appropriate for predictions over a 
short term (5–10 years) rather than over a long term. 
Once the prediction horizon exceeds a 10-year span, 
particularly for a fast-growing region, the reliability of 
the logistic model is questionable (<75.00%) and 

alternative methods may be needed. Nevertheless, this 
does not lessen its value for identifying significant 
predictors and providing objective statistical 
assessment. Furthermore, the logistic model has 
generated better predictions in more urbanized, 
compact, and continuous areas than in more rural, 
fragmented, and isolated areas. Whether this resulted 
from the limitation of the logistic framework, selection 
of variables, data quality, or complexity of geographic 
configuration, is worth further study.  

The above finding also justified integrating the rule-
based suitability model and the focus group technique 
with the logistic model for long-term prediction. 
Although the rule-based suitability model is 
conceptually and structurally similar to the one 
developed by Pijanowski et al. (1997), it emphasizes 
the excluding rule (about water, wetlands, and 
protected lands) and the principle rule (about roads) in 
a way similar to Clarke’s (1997) study. During the 
process of model calibration and weight adjustment, 
we noticed that, as urban area grows through time, 
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only physical environmental factors such as water 
impose constraints and major roads determine the 
layout, with protected lands excluded from 
development. As water bodies and protected lands are 
easy to identify and are more likely to remain 
unchanged, proper rating and weighting of roads in 
relation to existing urban areas are crucial for a 
reliable long-term prediction. It may be argued that 
incorporation of focus group “opinions” makes the 

computer-aided modeling less “scientific.” However, 
given that the opinions reflect the knowledge and 
intelligence of these local experts, planners, 
developers and other professionals that comprise the 
focus group, we believe the prediction is more 
realistic. More importantly, with more people 
involved, the whole modeling process has become a 
public educational process and the focus group has 
become a means of information dissemination. 

 

Fig. 6. Predicted urban area in the Charleston region by year 2030.  

 

This research faced several limitations and constraints. 
Even though the computer model is capable of 
predicting multiple land uses, only two categories 
were studied here, mainly because the source data set 
was rich in terms of time series but poor in terms of 
number of land use classifications. Limited availability 

and concurrency of spatial data also caused problems 
in deriving predictor grids for the starting baseline 
year. The use of interpolation and estimation 
techniques not only induced errors but also required 
more skill, effort, and time in data preparation. More 
importantly, it made the prediction less reliable. Some 
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of these problems can be resolved if change detection 
and modeling both adopt census years as their baseline 
years. If 1990 and 2000 are selected as the baseline 
years, there will be more concurrent (census) data sets 
available for deriving more socio-demographic 
variables or interaction variables that could make the 
model relatively complete. Admittedly, the model was 
built with consideration of some environmental factors 
unique to the Atlantic coast. It is an open, operational 
model that requires only general variables to build and 
minimal skill to operate. It can be easily applied in 
other geographical regions to predict land use change 
at the regional, county, or municipality scale. As 
parcel data become available for more areas, the model 
can be refined with finer spatial units. Although the 
integrated model was used for a long-term prediction, 
the interpretation of the results should be cautious if 
the projection period extends beyond two decades. We 
recommend taking a continuous modeling approach if 
multi-year data sets are available. Scenario-based 
simulation is particularly appropriate for long-term 
prediction. Both statistical results and prediction 
reliability can be improved if the study area is 
subdivided into several units in which differentiated 
rules or relationships can be derived and applied. The 
focus group’s input can be better documented if 
interactive mapping or internet mapping techniques 
are used in a laboratory format. It can also be 
converted into probabilities based on the fuzzy rule 
concept.  

Environmental implications 

Although urban growth has positive economic impacts 
on the local economy, it has largely negative impacts 
on the natural environment and coastal ecosystems. 
Even at a 5:1 growth ratio, which is smaller than the 
status quo of 6.2:1, urban area in the Charleston region 
will triple its current size in the next 30 years. In other 
words, there will be an additional 618 square miles of 
natural or rural land converted to urban use.  

This process inevitably involves altering or destroying 
natural environments, building barriers to natural 
processes, and altering natural geo-chemical cycles 
through pollutant disposal, as well as many other 
problems. Preliminary overlays of the predicted 2030 
urban area over selected resources indicate that 30% of 
forest land and 50% of cultivated farmland in the 
region will be lost; 35% of wetlands, 70% of tidal 
creeks, and 60% of shellfish beds may be impacted; 
and over 50% of historic landmarks and 30% of 

archeological sites will be at risk of losing their rural 
attributes. To prevent these estimates from becoming a 
reality, we need to change the way we do doing things. 
To mitigate the negative impacts, critical areas and 
species should be identified and protected from 
development; to reduce per capita land consumption, 
appropriate or higher density of development should 
be encouraged. To these ends, this modeling project 
provides quantitative, visual, spatial, and temporal 
information for planners, environmentalists, and 
developers.  

It is also encouraging that the project has quickly 
precipitated a number of policy initiatives at the local 
level, as well as heightened awareness efforts 
throughout the state of South Carolina. Since the 
results of the research were reported in the media, a 
memorandum regarding saving green space through a 
tax has been proposed to the Charleston County voters. 
In fact, upon seeing the extent of predicted growth, 
one local council member stated “I will ensure that this 
does not happen!” State agencies have established 
several entities to deal exclusively with smart growth 
issues at the state level. The research also triggered 
similar studies in other areas. These include Beaufort-
Hilton Head, Myrtle Beach, and the Saluda-Reedy 
Watershed in South Carolina and the Chesapeake Bay 
area in Maryland. Regional planners have used time 
series maps for reevaluation and revision of the 
comprehensive plan, and the South Carolina Coastal 
Conservation League relied on the information to 
launch an educational “Charleston Greenbelt Project.” 
Both technical solutions and political solutions have 
their limitations, but educational solutions may be a 
promising alternative in the long run. It is our hope 
that this growth prediction model will continue to give 
the public objective food for thought.  

CONCLUSIONS 

This research took a hybrid approach to modeling and 
prediction of urban growth in the metropolitan 
Charleston region. To make the prediction objective, 
flexible, and realistic, a binary logistic model was 
integrated with a rule-based suitability model through 
a participatory process to predict the probabilities of 
urban transformation. Future urban growth was 
simulated based on different growth scenarios that 
related urban area growth with population growth. The 
logistic model was found useful for identifying 
significant predictors and has achieved high prediction 
success rates for all land use categories as a whole, and 
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moderate success rates for the urban use over a 21-
year time span. Results of temporal validations 
indicate that the logistic model is statistically reliable 
for short-term prediction, but becomes less reliable 
once the time-span becomes longer. This finding 
justified the use of a multiple-model approach for 
long-term prediction. The rule-based suitability model 
was found to be a complementary alternative in 
situations wherever physical suitability and major 
roads are the only determinants for long-term urban 
growth. The use of a focus group not only made it 
possible to “operationalize” some intangible variables 
and evaluate future prediction, but also created an 
educational opportunity for participants and a means 
of disseminating information.  

Although urban land use is a complex system that 
imposes a challenge for science and practice, GIS-
based urban growth modeling can provide quantified, 
visualized, spatial information on the future that is 
otherwise difficult to obtain. Land use modeling is not 
a computer game; it is an objective prediction. The 
findings of this research have substantial implications. 
Even under a conservative scenario, the Charleston 
region is been predicted to triple its urban area and to 
face rapid urban sprawl in the next 30 years. The 
associated land development will inevitably exert 
tremendous pressure on the natural environment and 
coastal ecosystems. The model has provided a vision 
of the future, good or bad, that it is hoped will draw 
public attention and increase environmental 
awareness. It is up to the elected officials, community 
leaders, local planners, landowners, developers, and 
conservationists to make wise decisions and take 
appropriate actions. 

Responses to this article can be read online at: 
http://www.consecol.org/vol8/iss2/art2/responses/index.html 
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