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ABSTRACT. Climate change will accelerate forest mortality due to insects, disease, and wildfire. As a result, substantial resources will
be necessary where and when forest managers seek to maintain multiple management objectives. Because of the increasing managerial
requirements to offset climate change and related disturbances, the uncertainty about future forest conditions is magnified relative to
climate change alone. We provide an analytical approach that quantifies the key drivers of forest change—climate, disturbance, and
forest management—using scenarios paired with simulation modeling to forecast and quantify uncertainties in the Lake Tahoe Basin
of California and Nevada (USA), a montane seasonally dry conifer forest. We partitioned uncertainty among climate change (including
associated changes to wildfire and insect outbreaks), forest management (including thinning, prescribed fire, and fire suppression), and
other sources using a fully factorial experimental design and analysis of variance. We focused on three metrics that are important for
forest management objectives for the area: forest carbon storage, area burned at high severity, and total area burned by wildfire.
Management explained a substantial amount of variance in the short term for area burned at high severity and longer term carbon
storage, while climate explained the most variance in total area burned. Our results suggest that simulated extensive management
activities will not meet all the desired management objectives. Both the extent and intensity of forest management will need to increase
significantly to keep pace with predicted climate and wildfire conditions.
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INTRODUCTION
We are experiencing unprecedented global change and these
changes will accelerate in the coming decades. Globally, forests
are subject to many drivers of anthropogenic change (McIntyre
et al. 2015, Franklin et al. 2016, Balch et al. 2017) that may reduce
their capacity to deliver expected levels of ecosystem services
(Asner et al. 2015). Because these anthropogenic drivers interact
in surprising ways and their future magnitude is also uncertain,
the future of forests are highly uncertain (Millar et al. 2007,
Lindner et al. 2014, Luce et al. 2016, Wang et al. 2016, Boulanger
et al. 2018). Natural resource managers must account for
uncertainty when making decisions (Nichols et al. 2011, Lindner
et al. 2014) but climate change magnifies uncertainty and can be
a barrier to management action (Polasky et al. 2011, Adams 2013,
Scheller and Parajuli 2018).  

Despite decades of progress, there remain many sources of
uncertainty that constrain our capacity to understand and
forecast future forests, including parameter uncertainty (the data
that feed into the models), model uncertainty (reflecting our
overall understanding of how the system operates), and inherent
uncertainty (unresolvable uncertainty; Higgins et al. 2003, Morin
and Thuiller 2009, Reyer et al. 2016). Nevertheless, within the
domains of forest ecology and management there are
opportunities to quantify and evaluate the sources of uncertainty
through the use of scenario planning. Scenarios in combination
with forecasting models are a common approach to quantifying
uncertainty by attempting to identify outcomes from a variety of
inputs, states, and actions (Peterson et al. 2003). By identifying
the plausible or potential bounds of the primary drivers of system
change, uncertainty due to each (or neither) can be estimated
(Polasky et al. 2011). In the case of forests and climate change,
the climate forecasts themselves are a substantial source of
uncertainty as they reflect a range of social, economic, and
technologic variables themselves (Van Vuuren et al. 2011). Model

uncertainty can also be substantial (Petter et al. 2020). Forest
disturbances contribute considerable uncertainty to our
understanding of forest futures (Hicke et al. 2006, Millar et al.
2007, Littell et al. 2010, Scheller et al. 2011, Anderegg et al. 2015,
Seidl et al. 2016, Bognounou et al. 2017, Coen et al. 2018, Stephens
et al. 2018). On the contrary, negative feedbacks among
disturbances, in combination with ecological memory, may reduce
uncertainty. Disturbances do not necessarily compound; there
can be negative feedbacks among disturbances that tend to reduce
the magnitude (i.e., tree mortality) of subsequent disturbances
such as with insects and high severity fire where fire risk is reduced
after needle drop (Meigs et al. 2016). Forested landscapes have
long ecological memories (Sun et al. 2013, Johnstone et al. 2016)
—consisting of the biotic elements, their age, and spatial
distribution—that limit their future behavior (Rhemtulla et al.
2009, Loudermilk et al. 2013, Perring et al. 2016).  

We provide an analytical approach that quantifies the key drivers
of forest change, climate, disturbance, and forest management
using scenarios paired with simulation modeling to forecast and
quantify future uncertainties. We focused on uncertainty
generated by climate change (including associated changes to
wildfire and insect outbreaks), forest management (including
thinning, prescribed fire, and fire suppression), and other sources
using a fully factorial experimental design (similar to Seidl and
Lexer 2013); we conducted an analysis of the variance generated
by uncertainty (e.g., Seidl and Lexer 2013).  

Our combination of scenarios and modeling enabled forecasting
of an array of potential futures as dictated by climate and
management. The information generated can subsequently
inform long-term strategic management planning (Sturtevant et
al. 2007), which can, in turn, answer this question: Can
management continue to guide outcomes on this landscape in
spite of changing climate?  
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Table 1. Management scenario broken down by intent and treatment type, by hectares, annually (approximate, rounded).
 
Scenario Management specifications Mecha

nical
Hand Prescribed

fire
Total Percent of

landscape
treated

annually

Stand
minimum

re-treatment
time

Natural
ignitions as

managed fires

1 The only management activity was to suppress fires. 0 0 0 0 0% 0 No
2 Management activities were focused on forest thinning in

the wildland-urban interface (WUI). This management
strategy was designed to provide a buffer of defensible
space around human-built structures and property. It
treated ~2% of the vegetated area each year, all in the
WUI. This scenario most closely resembled current
management activities in the Lake Tahoe Basin. Fire
suppression efforts remain the same as Scenario 1.

350 950 0 1300 2% 20 No

3 This scenario builds upon Scenario 2 by expanding
management activities into the remaining forested
landscape beyond the WUI and used predominantly
mechanical and some manual methods to thin the forest
and reduce biomass. It treats approximately 6.7% of the
vegetated area each year. Fire suppression efforts remain
the same as Scenario 1.

1200 3800 0 5000 7% 11 No

4 This scenario builds upon Scenario 2 by expanding
management activities into the remaining forested
landscape. Scenario 4 uses primarily prescribed fire and
managed wildfire. This scenario treats approximately 4%
of the vegetated area each year. Fire suppression efforts
were the same as Scenario 1 in WUI areas but natural
ignitions were allowed to burn for resource objectives in
the wilderness areas.

250 1000 1800 3050 4% 20 Yes, in
wilderness

5 This scenario builds upon Scenario 4 by greatly expanding
the use of prescribed fire. This scenario treats a
approximately 7.2% of the vegetated area each year,
slightly more than Scenario 3, but with the majority of
treatments (75%) being prescribed fire. Fire suppression
efforts were the same as Scenario 1 in WUI areas but
natural ignitions were allowed to burn for resource
objectives in the wilderness areas.

250 1000 6600 7850 11% 20 Yes, in
wilderness

We assessed three metrics that we forecasted through time that
reflect present day management objectives, including the
restoration of a more natural fire regime dominated by low-
intensity fire; the reduction of high-risk, high-intensity wildfires;
and the maintenance of potential C sequestration. We address
this issue within the Lake Tahoe Basin (LTB), which is well-suited
for landscape modeling because (1) the forests are mostly in public
ownership, which allows for a unified approach to forest and fire
management, (2) wildfires there have been historically confined
within its steep basin boundaries, and (3) the climate is expected
to warm but will remain characterized by winter snow and dry
summers.

METHODS
Our analysis was a component of a larger effort to examine social
and ecological resilience in the Lake Tahoe West (LTW) study
area under alternative management strategies as part of a
collaborative landscape restoration effort. This larger effort is the
subject of various articles in this special feature, and more
information about that project is available here: https://www.
nationalforests.org/regional-programs/california-program/laketahoewest.
This core of this effort involved modeling ecological change in
the forests of LTW over time.  

We forecast climate and management interactions using the
LANDIS-II simulation modeling framework; LANDIS-II

simulates management and climate forcings to quantify
uncertainty (Scheller et al. 2007). We simulated five management
strategies varying in overall intensity and specific management
activities deployed (Table 1) and eight climate projections in a
fully factorial design. We selected our 40 scenarios to reflect the
full range of plausible climate and management projections that
were then replicated three times, therefore encapsulating most of
the uncertainty from both (while recognizing that there is
potential uncertainty beyond what is currently regarded as
plausible). The behavior of the dominant disturbances, wildfire
and insects, were dependent upon both climate and management.

Metrics
A variety of metrics were used to evaluate social and ecological
resilience as part of the larger LTW research effort; these metrics
were selected and constructed with input from a group of
stakeholders as well as the research team (see Abelson et al. 2022).
For this analysis, we examined three metrics that reflect important
landscape dynamics relevant to forest management: (1) area
burned at high intensity, (2) total area burned by wildfire; and (3)
landscape carbon density. Note that our fire module was set up
to represent fire intensity, specifically to approximate different
classes of flame lengths and crown fire, but it serves also a measure
of fire severity (Scheller et al. 2019). Although many dimensions
of fire regime are important to consider, area burned at high-
intensity may be more informative than percent area burned at
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high-intensity or severity. Area burned at high severity has been
widely reported as a measure of departure in fire history studies
(e.g., Safford and Stevens 2017), but that measure has potential
to distort understandings of landscape change. For example, if  a
small area burns mostly at high-intensity in one year, followed by
a large area mostly at low-intensity in another year, that outcome
may be very consistent with a resilient landscape condition.
However, if  those relationships are switched, i.e., a small area at
low-intensity followed by a large area at high-intensity, that
outcome is indicative of departure from reference conditions.
However, a metric based upon average percent high-severity does
not effectively distinguish between those two outcomes.  

Total area burned by wildfire is an important process variable,
although in itself  is not generally indicative of ecological resilience
for fire-adaptive landscapes. Area burned by wildfire is important
for understanding larger social and ecological processes, such as
costs of suppression, smoke emissions, and restoration of
functional fire, which were important indicators to stakeholders
(Abelson et al. 2022). Carbon storage, both within the forested
landscape and overall system (including wood products)
represents another value important to some stakeholders
(especially because funding programs have been established to
support management that stores carbon). For this analysis, we
considered carbon density, or mass per unit area (Mg ha-1) within
the landscape as a measure of this social-ecological value. We
focus on these three indicators to consider resilience in fire-
adapted ecosystems under climate change. Much recent research
has suggested potential to both restore fire and secure carbon
stores (e.g., Krofcheck et al. 2017, Loudermilk et al. 2017, Liang
et al. 2018). However, some research has also suggested that
carbon stocks in contemporary forests of the Sierra Nevada have
exceeded historical references in some areas with a long-history
of fire suppression (Harris et al. 2019), which suggests that
reductions in carbon may be consistent with ecological
restoration. Therefore, this analysis sheds light on important
trade-offs when considering alternative management strategies in
light of climate change.

Study area
The Lake Tahoe Basin (LTB) consists of 70,000 ha of
predominantly forested land around Lake Tahoe in the Sierra
Nevada of California and Nevada, USA (Fig. 1). The majority
of the LTB forested area is under the management of the USDA
Forest Service. The climate is a Mediterranean-influenced
continental climate with warm to hot summers and most of the
precipitation falling as snow in the winter. Annual precipitation
averages a little over 1000 mm per year (ranging from 400 mm to
2000 mm; Fig. A1.1), with a mean minimum monthly temperature
average around -7 °C and mean maximum monthly temperature
around 24 °C (PRISM 30-year averages; Fig. A1.2). Most forests
are mixed conifer, with the composition varying across
topography and soils. At higher elevations, red fir (Abies magnifica
A. Murr.) dominates, while in lower elevations Jeffrey pine (Pinus
jeffreyi Grev. & Balf.) and white fir (Abies concolor Gord. &
Glend.) dominate. Sugar pine (Pinus lambertiana Dougl.) and
incense-cedar (Calocedrus decurrens (Torr.) Florin) are important
components of the lower elevation forests. Shrub fields exist
throughout elevation classes, featuring species primarily from the
Ceanothus and Arctostaphylos genera.

Fig. 1. Map of the Lake Tahoe Basin. WUI, wildland-urban
interface.

Much of the basin was heavily logged beginning in the late 19th
century to support mining operations in the greater area (Taylor
2004). Following the subsequent recovery of the forests and the
institution of fire suppression policies, the present-day forests
have become denser and feature more shade-tolerant tree species
at the expense of less shade-tolerant pines (Barbour et al. 2002).
Loudermilk et al. (2013) project that this trend will continue over
the next 80 years. Wildfires were much more frequent prior to
Euro-American settlement, with small fires happening nearly
every year in some watersheds, while larger fires occurred once
every 35 years (Taylor and Beaty 2005). Several species of bark
beetles are also present in the Basin and have caused mortality
across large areas of forest (Scheller et al. 2018).
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Forest and disturbance modeling
We chose the LANDIS-II simulation framework because it
simulates forest succession, disturbance, and management over
long time periods and wide spatial extents (Scheller et al. 2007).
In LANDIS-II trees and shrubs species are modeled individually
as species-age cohorts, each species has its own life history
attributes (e.g. shade tolerance, fire tolerance, dispersal ability,
etc.), and multiple cohorts can occupy the same space. This allows
species to respond uniquely to the multiple and interactive drivers
(Scheller et al. 2007). Moreover, each species has its own range of
temperature and water optimums, and so each responds to the
future climate projections differently. Cohort establishment,
likewise, was dependent on climate conditions, and it was assumed
that there would only be natural regeneration on this landscape.
Species parameters are detailed in Loudermilk et al. (2013),
Kretchun et al. (2016), and Scheller et al. (2018). Initial
aboveground biomass results were validated against Wilson et al.
(2013; see Appendix 1 for supplemental methods and Fig. A1.4).

The ignition, spread, and intensity of fires (both wild and
prescribed) were modeled using the Social-Climate Related
Pyrogenic Processes (SCRPPLE v. 2.1) extension (Scheller et al.
2019). Simulated fire regimes are sensitive to climate; recent
wildfires (2000–2016) were used to parameterize fire spread and
size. Five fire experts working in the region provided their
estimates of the mortality of three fire intensities for varying
species and age combinations.  

Three beetle species—Jeffrey pine beetle (Dendroctonus jeffrey),
mountain pine beetle (Dendroctonus ponderosae), and fir engraver
beetle (Scolytus ventralis)—that cause the majority of insect
mortality within the LTB, as well as white pine blister rust
(Cronartium ribicola), were simulated using a modified version of
the Biological Disturbance Agent (BDA v.2.0.1) extension
(Sturtevant et al. 2004); the modification triggers outbreaks
following climate water deficit (CWD) and minimum winter
temperature thresholds. The extension requires insect-specific
resource requirements and assigns a species-specific vulnerability
that varies by age. Mortality at an outbreak site is determined by
tree species’ age and host susceptibility probabilities based from
empirical field studies (Egan et al. 2010, 2016) and expert opinion.
The parameters for insect spread and their resultant mortality are
outlined in Kretchun et al. (2016). Additionally, results from the
Insect and Disease Detection Survey (1993–2017) were used to
validate the model results under historical climate conditions (see
Fig. A1.5). However, there were challenges associated with using
a climate threshold as a trigger approach as it ignores the brood
mechanics and so does not capture the epidemic “wave” pattern
of Egan et al. (2016). As such, the model underestimates peaks
and overestimates troughs; instances where population dynamics
override climate controls. All model parameters, and the model
and extension versions used, are available on GitHub at: https://
github.com/LANDIS-II-Foundation/Project-Lake-Tahoe-2017/.

Management modeling
We developed five scenarios that represent unique approaches to
achieving multiple management objectives: restore a low-intensity
fire regime; reduce the risk of high-intensity fires; and maintain
carbon sequestration. These scenarios were co-developed with
managers representing multiple agencies operating within LTB
along with input from stakeholder groups operating in the region.

For details of area treated annually and treatment frequency for
each scenario, see Table 1. Scenario 1 features no fuels
management paired with a high fire suppression. Scenario 2
focuses on reducing wildfire hazard in wildland-urban interface
(WUI) area (1.5 miles from urban development) through hand or
mechanical thinning (based upon accessibility) along with high
effort fire suppression; it was closest to the current, business-as-
usual strategy because understory prescribed burning has been
rather limited. Scenario 3 increases the intensity and extent of
vegetation thinning treatments. This scenario focuses on hand
and mechanical treatments in the WUI and general forest, with
hand treatments occurring in the wilderness as well. Scenario 4,
the fire-focused strategy, uses prescribed and managed natural
ignitions, along with some limited thinning in the WUI (akin to
Scenario 2) to reduce fuels and restore forest structure. Prescribed
fire was constrained to be low-intensity fire only, based upon
guidance from managers regarding their intent. Scenario 5 was
similar to Scenario 4, but with higher levels of prescribed burning.
In Scenario 4 and Scenario 5, natural ignitions were not
suppressed in management zones outside of the WUI. The
amount of area treated under the five scenarios ranges from 0%
to 11% of the landscape annually. The amount removed by
thinning treatments were based on recent treatments within the
Basin, and moreover followed the same approach of a thin-from-
below up to a set diameter size class (27 cm dbh for hand thinning,
61 cm dbh for mechanical thinning) and slope restrictions (< 30%)
for mechanical operations.

Climate modeling
In keeping with the 4th California Climate Assessment, future
climate projections were derived from four Global Change
Models (GCM; CanESM2, CNRM5, HADGEM2, and
MIROC5) under two different relative concentration pathways
(RCP) (4.5: which is an “optimistic” scenario of emissions; and
8.5: which represents a “business-as-usual” uncontrolled
emissions scenario) using the localized constructed analogs
downscaling methodology (Pierce et al. 2014). Climate futures
ranged substantially with respect to precipitation: some
projecting an increase of around 30% more annual precipitation
(CanESM2 8.5), others projecting an almost equivalent decrease
(MIROC5 8.5). With the CanESM2 8.5 projection, summers were
projected to see an increase in summertime precipitation. Under
the MIROC5 GCM, the area is expected to see increasing
frequency and persistence of summertime droughts (Fig. A1.3).

Analysis
In order to differentiate between management and climate sources
of uncertainty, an analysis of variance was performed using
climate and management scenario as group factor variables for
every time step of the model run and for our three metrics
(landscape carbon density; area burned at high-intensity, and
total area burned by wildfire). This analysis was repeated using
decadal averages of each metric to reduce temporal
autocorrelation associated with persistent climate events like
multi-year droughts. We also examined a climate by management
interaction effect although doing so produced too few degrees of
freedom at the annual or decadal scale. The analysis was
performed using the “car” package (3.0) in R (3.5.2). The reported
explained variance is in terms of the sum of squares (SS), which
can be apportioned into treatment effect and error. Error
represents other sources of variation not explained by climate or
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Fig. 2. Landscape level results for carbon and fire metrics by climate projection and management scenario
through model year 100. (A) Projected landscape C density, in megagrams per hectare, for the Lake Tahoe
Basin by management scenario, by climate projection. (B) Cumulative number of hectares that burned at
any intensity by climate projection. (C) Cumulative number of hectares that burned at high intensity by
climate projection. Ribbons represents +/- 1 standard deviation across 3 replicates.

management and results from stochastic model behavior not
specifically related to climate or management, e.g., randomized
ignition locations and seed dispersal.

RESULTS

Total area burned by wildfire
Climate was the main driver for total area burned. Despite the
different approaches taken with respect to management practices
among the different scenarios, there was little difference in the
total area of wildfire (Fig. 2B).

Area burned at high intensity
The area of high intensity (> 8’ flame length) fire was most limited
under the intensive third scenario (Fig. 2C). The influence of
climate on high-intensity area burned was closely tied to the
precipitation values for each climate projection (Fig. A1.1). As a
result of increasing summertime precipitation, the CanESM2 8.5

climate projection resulted in the least of amount of high-
intensity fire. The persistent droughts toward the end of the
century forecast under the MIROC5 RCP 4.5 and 8.5 climate
projections resulted in the largest high-intensity area burned by
the end of the century (approximately 2-3 times higher than the
CanESM2 RCP 8.5 projection; Fig. 2C).

Landscape carbon density
Our simulations project that forest carbon would increase through
time as this forest recovers from historical logging. There was not
a substantial amount of variation among the climate projections
until the end of the century, when there was the greatest divergence
among the different climates (Fig. 2A). The intensive mechanical
treatment scenario (Scenario 3, subjected to the most thinning,
produced an initial decline in C density (Fig. 2). However, this
was offset over the century as the thinned stands were less likely
to experience high-severity fire, resulting in a higher rate of carbon
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sequestration. The high fire use scenario (Scenario 5) had the
lowest C density at the end of the century, in part due to greater
removal of C in surface fuels, dead wood, and standing biomass
from long-term use of prescribed fire (as compared to hand or
mechanical thinning treatments used in Scenario 3).

Variance decomposition
Group predictors (climate and management scenario) explained
a range of variation in landscape C density, total area burned,
and area burned at high intensity, ranging from 11 to 98% of
variance (adjusted R-squared) in a given year (Figs. 3, 4, and 5).
Management strategy and climate projection explained
substantially more of the variation in landscape C density (and
were always significant; Fig. 5) as compared to total area burned
or high-intensity area burned (Figs. 3 and 4, respectively). This
difference highlights the uncertainty of fire generally and
indicates that there are other sources of uncertainty, including the
stochastic numbers of fires and their locations.

Fig. 3. Variance decomposition through time for climate and
management factors for high severity fire area. Proportion of
variance, in terms of sum of squares explained by factor
(climate, management, error), each year (left), and each decade
(right) through time for the area burned by high severity
wildfire. Also included is the adjusted R-squared for each
model for each timestep. Panel C and D show P-value for each
factor.

Fig. 4. Variance decomposition through time for climate and
management factors for total wildfire area. Proportion of
variance, in terms of sum of squares explained by factor
(climate, management, error), each year (left), and each decade
(right) through time for the total area burned by wildfire. Also
included is the adjusted R-squared for each model for each
timestep. Panel C and D show P-value for each factor.

For total area burned, management explained less variance than
with high-intensity fire at annual and decadal time scales. Climate
was the main driver of total area burned, while management was
the main driver of area burned at high-intensity (Fig. 3). For high-
intensity fire, climate explained more variance than management
although the error term—functionally the stochasticity of
disturbance within the model—accounted for much of the total
variance (Fig. 4A). When aggregated to a decadal time step,
management explained substantially more variance in the area of
high severity fire (see Fig. 4B). At the decadal scale, large
fluctuations in climate are averaged out (wet years can follow dry
years, except during periods with multi-year droughts forecast),
while the area treated was deterministic (i.e., determined by the
management scenarios).

https://www.ecologyandsociety.org/vol27/iss2/art15/
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Fig. 5. Variance decomposition through time for climate and
management factors for mean total carbon. Proportion of
variance, in terms of sum of squares explained by factor
(climate, management, error), each year (A), and each decade
(B) through time for the mean total landscape carbon. Also
included is the adjusted R-squared for each model for each
timestep. Panel C and D show P-value for each factor.

DISCUSSION
Uncertainty regarding future forest conditions has important
implications for derived social values, including ecosystem
services (Hou et al. 2013, Hamel and Bryant 2017). From carbon
storage to wildlife habitat, forest benefits are dependent on the
interactions of climate, disturbance, and management. When
those benefits drive the local economy, such as recreation in the
Lake Tahoe Basin, quantifying the contribution of individual
drivers improves decision making regarding the forest and the
benefits in question, which is the focus on another manuscript in
this special feature (Abelson et al. 2022). We focused on the
primary sources of uncertainty—climate and management and
interactions with fire—in our simulations of forest landscape
change in order to assess the ability of management generally to
shape future forest conditions. Our results suggest areas where
management can have the greatest influence (high-intensity fire
~ landscape C density > total area burned). Although this

landscape is unique in its centralized ownership, which may limit
the broader applicability of this study, there is now greater
movement toward whole landscape planning for the State of
California.  

The amount of area treated was more important in reducing area
of high-intensity fire than the type of treatment used: as the area
treated increased, the area burned by high-intensity fire declined
because a fire would have a larger likelihood of intersecting a
treated area. This is evident from the order of the results in Figure
2C and how they align with the number of hectares treated in
each management scenario (i.e., 1, 2, 4, 3, 5). However, the
variance explained by management waned as climate change
uncertainty increased over the century, implying that the
effectiveness of management may decline after 40 years.
Management efforts within the LTB may need to increase
substantially through time, more than managers considered when
co-designing the management strategies tested. In the near term,
more aggressive initial treatment may delay widespread mortality,
and in the long term, promote the transition to a more drought-
tolerant species mix (Elkin et al. 2015). In general, our results
suggest that to increase the capacity of LTB forests to remain
forests, management would need to cover a greater proportion of
the landscape in a shorter period of time (Drever et al. 2006).
Without this increased level of investment and activity, the rate
of change brought by management actions may not keep the forest
within a desirable condition (Johnstone et al. 2016).  

Fuel treatments (hand and mechanical thinning) locally reduce
fire intensity and rate of spread. The extent to which this holds
true at the landscape-scale is debated (Campbell et al. 2012,
Restaino and Peterson 2013), because in low-ignition
environments there is only a small chance that fire will intersect
with a treatment. At the same time, climate change and associated
higher temperatures will reduce fuel moisture and will generate
larger and more intense fires (Westerling and Bryant 2008). Our
results suggest that management reduces fire intensity at
landscape scales when the accumulation of treated area is large
enough that there is a high chance a wildfire will intersect a
treatment. This finding is consistent with other studies in the
region that have found that both area treated and incidence of
wildfire would need to increase from recent historical levels for
that intersection to take place (Chiono et al. 2017, Krofcheck et
al. 2017), and that there may be thresholds of area treated above
which that have even greater effectiveness in reducing the risk of
high severity fire (Stevens et al. 2016). The variance in area of
high-intensity fire and total area burned explained by
management declined over the century, which reflects the
warming and drying trend of climate change.  

In addition to management and climate uncertainty, we estimated
the error term or unexplained uncertainty, which is the variance
unexplained by either management or climate alone. This variance
is not the same as error propagation, which is the combination of
all the uncertainty of all the variables used in the development of
these results (Morgan et al. 1990). In our modeling framework,
unexplained variance of landscape C density may include a fire-
by-climate effect: as the climate warms, the number of fires
increases, but probabilistically. A given warm and dry day may or
may not produce multiple wildfires. Therefore, the “inherent”
variance (Higgins et al. 2003) increases over time in parallel with
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climate for our estimates of landscape C density. In contrast, the
inherent variance remained relatively constant for total and high-
intensity area burned because maximum area burned for each fire
was a linear function of climate (Scheller et al. 2019).  

Although there is and always will be uncertainty about the future,
management has an important role to play in shaping the future
forest conditions. Management actions can shape landscape
conditions in spite of climate uncertainty up to a certain point.
Areas, or metrics, where management is less effective suggests the
need for new thinking about the kind (planned vs. reactionary),
intensity, rate, or placement of treatments. Given the recent
extremity of the climate conditions across the western U.S. only
highlights the need for treatment and the need for new thinking.

Responses to this article can be read online at: 
https://www.ecologyandsociety.org/issues/responses.
php/13278
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Supplemental Methods: 

Climate projections 

A combination of 8 projections were used from 4 different global change models (GCMs) at two 

relative concentration pathways (RCPs).  The RCPs chosen were 4.5 and 8.5, the former 

representing an emissions-controlled future, while the latter represents an uncontrolled emissions 

future.  The particular combination is based on recommendations from Pierce et al. 2016.  The 

LANDIS model utilizes the following climatological variables: daily precipitation (Fig. A1.1 and 

A1.2), daily maximum temperature (Fig. A1.3), daily minimum temperature, daily average 

windspeed, and daily average wind direction that are averaged across the Level II EPA 

ecoregions in the study area. 

Forest succession 

NECN (v6.5) simulates both above and belowground processes, tracking C and N through 

multiple live and dead pools, as well as tree growth (as net primary productivity--a function of 

age, competition, climate, and available water and N).  Soil moisture, as well as movement 

across the dead pools: wood and litter deposition and decomposition, soil accretion and 

decomposition are based on the CENTURY soil model (Parton et al. 1983, Scheller et al. 2011).  

Carbon estimates by pool were validated against Wilson et al. (2013) at the ecoregion level, 

where the model overestimated total C for only one region but was within one standard deviation 

for all others (Fig. A1.4).  Forest growth estimates using the climate data for year 2010-2015 for 

the region were calibrated against the MODIS 17a3 product annual mean for 2000 – 2015 (Fig. 

A1.5).  Mean landscape value for MODIS was 393 g C/m ^2 (sd 134), while for LANDIS the 

mean value was 320 g C/m^2 (sd 312).  Reproductive success is dependent on temperature and 

water. 

Fire modeling 

The SCRPPLE extension (v2.1) models ignitions by drawing the number of ignitions from a 

zero-inflated Poisson distribution and allocates them across the landscape with a weighted 

ignition surface for each type of fire modeled (Scheller et al. 2019).  The weather influence on 

fire is based on the Fire Weather Index (FWI) measures created by the Canadian Fire Prediction 

System (1992).  There are three categories of fires that can be modeled: lightning, accidental 

(i.e., human started), and prescribed fire.  The extension also includes the ability to explicitly set 

fire suppression effort levels across the landscape as well as by ignition type, where the 

suppression parameter reduces the probability of fire spread from one cell to another.  Effort 

levels can range from 0 to 3, where 0 is no suppression attempted, to 3 which represents high 

effort and was designed to mimic current suppression efforts in the Basin (Fig. A1.6).  However, 

suppression effectiveness can be limited by weather as well, a maximum wind speed parameter 

can limit suppression to days only when resources can be deployed safely.  That parameter was 

set at wind speeds of 11 meters per second (~25 miles per hour) in consultation with regional fire 

personnel.  Prescribed fires follow a set of weather prescriptions for when fires can occur (Table 

A1.2). 

Contemporary wildfires (2000-2016, from CalFIRE FRAP) were used to parameterize fire 

spread and size from the Central Sierra Nevada in order to increase the sample size of fires.  

Mean annual fire area (in ha) for observed data was 117 hectares per year (SD = 309), for 



modeled data, the mean value was 122 hectares per year (SD = 210).  In order to move from fire 

intensity to fire severity (to encompass the mortality associated with fire), five fire experts 

working in the LTB provided their estimates of mortality for varying species, age, and intensity 

combinations.  More details about the parameterization of the fire extension are found in Scheller 

et al. (2019).  Suppression effort and fire spread are calibrated at the same time in order to try to 

account for both forces in recreating the contemporary fire regime.      

The model calculates three levels of fire intensity, roughly corresponding to flame lengths of: 1) 

less than 4 ft, 2) between 4 ft. and 8ft., and 3) greater than 8ft.  While ignitions are based off of 

climate, fire intensity is based off of fuel loading within each cell.  LANDIS calculates fuel 

loadings based on the current year’s litter, duff, and downed and dead woody debris.  When a 

threshold of fine fuels is exceeded in a cell, the fire intensity increases.  This threshold is based 

off a value of ~1100g/m2 or about 5 tons per acre of fine fuels.  The other threshold is based on 

ladder fuels: a combination of specific species, under a certain age, and over a certain amount of 

biomass per area, contribute to intensity.  Those species contributing to ladder fuels are: Jeffrey 

Pine, white fir, and incense-cedar, and the cohorts in the cell have to be younger than 40 with a 

biomass greater than 2000g/m2 (9 tons per acre).  When one threshold is exceeded, fire intensity 

increases.  When both thresholds are exceeded, fire intensity is at its highest.  High intensity fire 

spreads as high intensity fire.  To validate fire intensity for the Basin, the targeted fire intensity 

value for any of the larger multi-day fires was 40% high, 40% mid, and a 20% low intensity, 

with high intensity less than 60% of the total fire area.  These targets are based on long-term 

averages calculated for the Northern half of the Sierra Mountains (which includes the Lake 

Tahoe footprint) using the Monitoring Trends in Burn Severity Composite Burn Index data.  

Over the entire data period (1984-2020), the percentage of area burned at high severity was 41% 

each year (with 36% and 22% for moderate and low severity respectively), with up to 58% of 

area burning at high severity in 2007, see Table A1.7.  

Insect modeling 

A modified version of the Biological Disturbance Agent extension (Biomass BDA v.2.0) 

(Sturtevant et al. 2009) was used to simulate insect outbreaks for three species of insects: Jeffrey 

pine beetle (Dendroctonus jeffrey), mountain pine beetle (Dendroctonus ponderosae), and fir 

engraver beetle (Scolytus ventralis).  The extension requires insect-specific resource 

requirements and assigns a species-specific vulnerability that varies by age. Cells are 

probabilistically selected for disturbance based upon the species host density at a given site and 

the presence of non-hosts reduce disturbance probability.  The parameters for spread and 

mortality are outlined in Kretchun et al. (2016), see Table A1.5 and Table A1.6 below.  Mortality 

at an outbreak site is subsequently determined by species' age and host susceptibility 

probabilities based from empirical field studies (Egan et al. 2010, 2016) and expert opinion, see 

Table A1.2 below. The insects had differing rates of spread per year from previous outbreaks.  

Mountain Pine Beetle had positive neighbor effects, where pheromones promoted more rapid 

spread when there were neighboring populations.  All insects were able to exploit recently 

burned stands up to 10 years after a fire.  Following mortality, dead biomass remains on site and 

moves to the downed woody debris C pool and the fine woody debris C pool. 

However, unlike Kretchun et al. (2016), the trigger for an outbreak was changed to be responsive 

to climate signals.  This is because for many beetle species climate influences outbreaks in three 

ways: low winter temperatures cause beetle mortality; year-round temperatures influence 



development and mass attack; and drought stress reduces host resistance. Here, we modeled 

climate influences as a function of drought and mean minimum winter temperature, recognizing 

that the full suite of climatic influences is necessary for a fully mechanistic model.  So long as 

annual climatic water deficit exceeded a set threshold, in conjunction with mean winter 

minimum temperatures exceeded a certain threshold, outbreaks could occur.  A comparison 

between the modeled and observed outbreak dataset (USFS Aerial Detection Survey: 

https://www.fs.fed.us/foresthealth/applied-sciences/mapping-reporting/index.shtml) found an 

overestimation of frequency of occurrence but an underestimation of area impacted by insects 

(Fig. A1.7).  However, there was unprecedented mortality across the Sierras due to the drought 

in California that lasted from 2012-2016, and the cause of the mortality has not been definitively 

attributed to insects or drought given that field studies are retrospective (e.g., Fettig et al. 2019, 

Restaino et al. 2019).  While the ADS data were the main source of such insect mortality data; 

there are significant limitations with the data.  Not all areas receive a fly-over each year and very 

few areas that are marked as having mortality receive on the ground verification.  A newer 

dataset developed by the R5 Remote Sensing Research Team uses LANDSAT images to assess 

changes in canopy cover through time.  From personal communication with Michele Slaton 

(USFS) who helped develop this data product, the amount of area affected by insects is far less 

than what is reported by the Aerial Detection Survey possibly due to the limited accuracy of fly-

over mapping.  However, these data are still provisional as their manuscript is in review.    



Supplemental Tables: 

Table A1.1. Suppression effort levels and effectiveness on fire spread probability. 

  

Fire Weather Index 

Thresholds Effort Level 

Fire Type 
Low-

mod 

Mod-

high 
Low Moderate High 

Accidental 40 60 0 5 10 

Lightning 40 60 0 5 10 

Rx  40 60 0 0 0 



Table A1.2.  Prescribed fire parameters used for Scenario 5 

Prescribed Fire Parameters   

MaximumRxWindSpeed 6.6 (m/s) 

MaximumRxFireWeatherIndex  55 (unitless) 

MinimumRxFireWeatherIndex  10 (unitless) 

MaximumRxFireIntensity 1 (low) 

NumberRxAnnualFires 364 (days of year allowable, subject to climate constraints) 

FirstDayRxFires  1 (first julian day for allowable fire, subject to climate constraints) 

TargetRxSize 72 (hectares) 

   



Table A1.3.  Species parameters used in modeling. 

Name Longevity 

Sexual 

maturity 

age 

Shade 

tolerance 

Fire 

tolerance 

Seed effective 

dispersal 

distance 

(meters) 

Maximum 

dispersal 

distance 

(meters) 

Vegetative 

Reproduction 

Probability 

Minimum 

age veg 

reproduction 

Maximum 

age veg 

reproduction 

Post-fire 

regeneration 

Pinus jeffreyi 500 25 2 5 50 300 0 0 0 none 

Pinus 

lambertiana 550 20 3 5 30 400 0 0 0 none 

Calocedrus 

decurrens 500 30 3 5 30 1000 0 0 0 none 

Abies concolor 450 35 4 3 30 500 0 0 0 none 

Abies magnifica 500 40 3 4 30 500 0 0 0 none 

Pinus contorta 250 7 1 2 30 300 0 0 0 none 

Pinus monticola 550 18 3 4 30 800 0 0 0 none 

Tsuga 

mertensiana 800 20 5 1 30 800 0.0005 100 800 none 

Pinus albicaulis 900 30 3 2 30 2500 0.0001 100 900 none 

Populus 

tremuloides 175 15 1 2 30 1000 0.9 1 175 resprout 

Non-N fixing, 

Resprouting 80 5 2 1 30 550 0.85 5 70 resprout 

Non-N fixing, 

Seeding 80 5 2 1 30 1000 0 0 0 none 

N fixing, 

Resprouting 80 5 1 1 30 500 0.75 5 70 resprout 

N fixing, 

Seeding 80 5 1 1 30 800 0 0 0 none 

 

  



Table A1.4.  Harvest removals prescription tables 
  

Abies 

concolor 

Calocedrus 

decurrens 

Pinus 

jeffreyi 

Abies 

magnifica 

Pinus 

contorta 

Pinus 

lambertiana 

NonnResp   NonnSeed FixnResp FixnSeed 

Hand Thinning Age range 1-60 1-64 1-52 1-60 1-73 1-52 10-200 10-200 10-200 10-200 

Scenario 1 - 5 Percent removed -66% -66% -66% -66% -66% -66% -5% -5% -5% -5% 

Trees up to 11” 

dbh 

Age range 61-70 65-78 53-68 61-75 74-88 53-64 
    

Percent removed -39% -39% -39% -39% -39% -39% 
    

            

Mechanical Thinning Abies 

concolor 

Calocedrus 

decurrens 

Pinus 

jeffreyi 

Abies 

magnifica 

Pinus 

contorta 

Pinus 

lambertiana 

NonnResp   NonnSeed FixnResp FixnSeed 

Scenario 1, 2, 4, 5 Age range 1-60 1-64 1-52 1-60 1-73 1-52 10-200 10-200 10-200 10-200 

Trees up to 24” 

dbh 

Percent removed -93% -93% -93% -93% -93% -93% -30% -30% -30% -30% 

Age range 61-65 65-71 53-60 61-68 74-80 53-58 
    

Percent removed -70% -70% -70% -70% -70% -70% 
    

Age range 66-70 72-78 61-68 69-75 81-88 59-64 
    

Percent removed -65% -65% -65% -65% -65% -65% 
    

Age range 71-75 79-84 69-76 76-82 89-96 65-70 
    

Percent removed -57% -57% -57% -57% -57% -57% 
    

Age range 76-80 85-91 77-85 83-90 97-105 71-77 
    

Percent removed -45% -45% -45% -45% -45% -45% 
    

Age range 81-84 92-99 86-95 91-97 106-115 78-83 
    

Percent removed -32% -32% -32% -32% -32% -32% 
    

Age range 85-89 100-107 96-105 98-104 116-125 84-90 
    

Percent removed -23% -23% -23% -23% -23% -23% 
    

Age range 90-93 108-115 106-115 105-112 126-136 91-97 
    

Percent removed -17% -17% -17% -17% -17% -17% 
    

Age range 94-98 116-125 116-126 113-120 137-148 98-104 
    

Percent removed -13% -13% -13% -13% -13% -13% 
    

Age range 99-103 126-135 127-138 121-127 149-161 105-112 
    

Percent removed -8% -8% -8% -8% -8% -8% 
    

Age range 104-108 136-145 139-151 128-135 162-176 113-120 
    



Percent removed -4% -4% -4% -4% -4% -4% 
    

            

Mechanical Thinning Abies 

concolor 

Calocedrus 

decurrens 

Pinus 

jeffreyi 

Abies 

magnifica 

Pinus 

contorta 

Pinus 

lambertiana 

NonnResp   NonnSeed FixnResp FixnSeed 

Scenario 3 Age range 1-60 1-64 1-52 1-60 1-73 1-52 10-200 10-200 10-200 10-200 

Trees up to 38” 

dbh 

Percent removed -95% -95% -95% -95% -95% -95% -30% -30% -30% -30% 

Age range 61-65 65-71 53-60 61-68 74-80 53-58 
    

Percent removed -95% -95% -95% -95% -95% -95% 
    

Age range 66-70 72-78 61-68 69-75 81-88 59-64 
    

Percent removed -85% -85% -85% -85% -85% -85% 
    

Age range 71-75 79-84 69-76 76-82 89-96 65-70 
    

Percent removed -85% -85% -85% -85% -85% -85% 
    

Age range 76-80 85-91 77-85 83-90 97-105 71-77 
    

Percent removed -85% -85% -85% -85% -85% -85% 
    

Age range 81-84 92-99 86-95 91-97 106-115 78-83 
    

Percent removed -75% -75% -75% -75% -75% -75% 
    

Age range 85-89 100-107 96-105 98-104 116-125 84-90 
    

Percent removed -70% -70% -70% -70% -70% -70% 
    

Age range 90-93 108-115 106-115 105-112 126-136 91-97 
    

Percent removed -60% -60% -60% -60% -60% -60% 
    

Age range 94-98 116-125 116-126 113-120 137-148 98-104 
    

Percent removed -35% -35% -35% -35% -35% -35% 
    

Age range 99-103 126-135 127-138 121-127 149-161 105-112 
    

Percent removed -20% -20% -20% -20% -20% -20% 
    

Age range 104-108 136-145 139-151 128-135 162-176 113-120 
    

Percent removed -10% -10% -10% -10% -10% -10% 
    

Age range 109-120  146-180  152-240 136-180 177-230 121-160 
    

Percent removed -10% -10% -10% -10% -10% -10% 
    

Age range 121-125 181-200 241-252 181-190 231-250 161-180 
    

Percent removed -5% -5% -5% -5% -5% -5% 
    

 



Table A1.5.  Insect disturbance inputs by insect 

 Fir 

Engraver 

 Jeffrey 

Pine Beetle 

 Mountain 

Pine 

Beetle 

 

 Parameter Source Parameter Source Parameter Source 

Dispersal 

Rate 

1000 m/year Jactel 

(1991) 

600 m/year Egan 

(personal 

comm.) 

400 m/ 

year 

Safranik 

(2006) 

Neighborhood 

Effect 

N/A USFS Fir 

Engraver 

Facts 

(2017) 

N/A N/A Yes, 2x Safranik 

(2006) 

Disturbance 

Modifier 

Fire: 100%, 

10 years 

Schwilk 

2006 

Fire: 100%, 

10 years 

Schwilk 

2006 

Fire: 100%, 

10 years 

Schwilk 

2006 

 

  



Table A1.6: Insect disturbance parameters by insect by host species 

  Susceptibility Mortality  

 Target 

Species 

Age 

Class 1 

Age 

Class 2 

Age 

Class 3 

Age 

Class 1 

Age 

Class 2 

Age 

Class 3 

Source 

Fir 

Engraver 

Abies 

concolor 

0-10, 

0% 

10-60, 

65% 

60+, 

75% 

0-10, 

0% 

10-60, 

8% 

60+, 

12% 

Ferrell 

1994, 

Schwilk 

2006, 

Egan 

(personal 

comm) 

Abies 

magnifica 

0-10, 

0% 

10-60, 

45% 

60+, 

55% 

0-10, 

0% 

10-60, 

8% 

60+, 

12% 

Jeffrey 

Pine 

Beetle 

Pinus 

jeffreyi 

0-20, 

10% 

20-30, 

80% 

30+, 

80% 

0-40, 

5% 

40-

120, 

18% 

120+, 

8% 

Egan et 

al. 2016 

Mountain 

Pine 

Beetle 

Pinus 

albicaulis 

0-20, 

33% 

20-60, 

66% 

80+, 

80% 

0-20, 

5% 

20-60, 

15% 

80+, 

20% 

Safranik 

(2006), 

Cole and 

Amman 

(1980) 

Pinus 

lambertiana 

0-20, 

33% 

20-60, 

66% 

80+, 

80% 

0-20, 

5% 

20-60, 

25% 

80+, 

30% 

Pinus 

contorta 

0-20, 

33% 

20-60, 

66% 

80+, 

80% 

0-20, 

5% 

20-60, 

15% 

80+, 

20% 

Pinus 

monticola 

0-20, 

33% 

20-60, 

66% 

80+, 

80% 

0-20, 

5% 

20-60, 

25% 

80+, 

30% 

 

 

  



Table A1.7.  Percent of fire severity type by class based on MTBS thematic burn severity for the Northern Sierras 
 

1984 1985 1986 1987 1988 1989 1990 1991 1992 1994 1996 1997 1999 2000 2001 2002 2003 2004 

High 

severity 

23% 16% 21% 32% 39% 37% 41% 6% 68% 48% 21% 17% 28% 45% 50% 31% 8% 42% 

Moderate 

severity 

30% 17% 52% 39% 35% 41% 35% 52% 23% 29% 56% 41% 49% 36% 37% 41% 51% 36% 

Very 

low/low 

severity 

47% 67% 27% 29% 27% 22% 24% 42% 9% 22% 23% 42% 24% 19% 13% 29% 41% 23% 

 
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

 
Total 

High 

severity 

32% 27% 58% 30% 20% 15% 5% 34% 42% 54% 45% 36% 38% 38% 37% 50% 
 

41% 

Moderate 

severity 

42% 52% 29% 48% 39% 45% 39% 48% 37% 24% 32% 43% 37% 40% 39% 26% 
 

36% 

Very 

low/low 

severity 

26% 21% 12% 22% 41% 39% 56% 18% 22% 21% 23% 22% 26% 21% 24% 24% 
 

22% 

  



 Supplemental Figures: 

 

Fig. A1.1.  Projected precipitation in mm yr-1, lines of best fit are GAM estimated, and boxplots 

represent distribution of annual precipitation for the years 2090-2100. 



 

Fig. A1.2.  Projected number of consecutive days with no precipitation, lines of best fit are GAM 

estimated, and boxplots represent distribution of consecutive days per year for the years 2090-

2100. 

  



 

Fig. A1.3.  Projected daily maximum temperature in degrees C, lines of best fit are GAM 

estimated, and boxplots represent distribution of daily temperatures for the years 2090-2100 for 

the future climate projections. 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. A1.4.  Observed versus modeled total C, in megagrams C per hectare, by ecoregion, error 

bars represent +/- 1 standard deviation. 

  



  

Fig. A1.5.  Comparison of MODIS (left) and LANDIS (right) estimates of Net Primary 

Productivity in g C/m ^2.  Mean landscape value for MODIS was 393 g C/m ^2 (sd 134), while 

for LANDIS the mean value was 320 g C/m^2 (sd 312). 

  



 

Fig. A1.6.  Map of suppression effort (left), management zone (middle), and the overlay of the 

two (right).  



 

Fig. A1.7. Observed versus modeled number of hectares affected by insect/mortality agent.  

Time 0 is equal to 1990, with Time 22-25 corresponding to the 2012-2015 California drought.  

FE is fir engraver beetle (Scolytus ventralis), JPB is Jeffrey pine beetle (Dendroctonus jeffrey), 

and MPB is mountain pine beetle (Dendroctonus ponderosae).   

 

  



 

Fig. A1.8.  Harvest return frequency by management scenario.  Treatments were expanded 

beyond the WUI area in Scenario 3.  Scenarios 3 through 5 had a higher intended treatment 

frequency.  



 

Fig. A1.9.  Histogram of fire sizes (left) and high severity fire area (right) by scenario and by 

climate  
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