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Research
Interactions Among Spatial Scales Constrain Species Distributions in
Fragmented Urban Landscapes

Will R. Turner1

ABSTRACT. Understanding species’ responses to habitat loss is a major challenge for ecologists and
conservation biologists, who need quantitative, yet practical, frameworks to design landscapes better able
to sustain native species. I here develop one such framework by synthesizing two ecological paradigms:
scale-dependence and constraint-like interactions in biological phenomena. I develop a model and apply
it to birds around Tucson, USA, investigating the manner in which spatial scales interact to constrain species
distributions in fragmented urban landscapes. Species’ responses vary in interesting ways. Surprisingly,
most show situations in which habitat at one spatial scale constrains the influence of habitat at another
scale. I discuss the implications of this work for conservation in human-dominated landscapes, and the
need to recognize constraint-like interactions among processes and spatial scales in ecology.
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INTRODUCTION

The distribution of species across ecological
landscapes, long a central focus of ecology, now
serves as the basis for much research in conservation
biology (Scott et al. 2002). Human-caused habitat
loss is a leading cause of species endangerment
worldwide (Wilcove et al. 1986). Consequently, the
future of efforts to conserve biodiversity will be
shaped by our ability to understand the varying
responses of species to fragmented landscapes, and
to translate that understanding into practical
conservation solutions.

Researchers have used two general approaches to
investigate the distribution of species in fragmented
landscapes. A first approach emphasizes the
ecological processes underlying the relationship
between species’ distributions and fragmentation.
This approach potentially allows direct investigation
of how processes such as dispersal (Hanski et al.
1996), predation (Tomialojc 1982, Haskell et al.
2001), competition (Shochat et al. 2004), survival,
and reproduction (Boal and Mannan 1999) mediate
the response of species to fragmentation. But the
application of process-based models is often made
impractical by difficulty in generalizing them over
heterogeneous landscapes, and by the great cost of

data necessary for parameter estimation, e.g.,
demographic or dispersal data, particularly when
dealing with new locations or species.

A second approach uses statistical, “empirical,” or
“phenomenological” models. This approach
involves regression or other statistical modeling
techniques applied to species data and one or more
environmental variables. These methods generally
can be applied to less costly data than process-based
models. However, they emphasize patterns that
emerge from data rather than a priori biological
knowledge, and may suffer from inadequate
representation of biological processes (e.g.,
O'Connor 2002, Van Horne 2002).

To date, much work has been done to document
negative impacts of habitat loss and fragmentation
in urban areas, and to understand these impacts in
terms of underlying biological processes. But so far,
recommendations for management remain more
heuristic than pragmatic. Abstract and unidirectional
recommendations such as “larger habitat areas are
better,” “animal species X needs more of plant
species Y,” or “the landscape scale is also
important” are of limited practical use. Given many
competing uses for urban land, quantitative
predictions are essential for efficiently allocating
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conservation resources. For example, quantitative
predictions may indicate not only what conservation
action is needed at a site, but also how much of it is
needed, preventing allocation of scarce resources,
e.g., money, beyond that necessary. Within a larger
planning context, quantitative biological predictions
might additionally indicate sites for which too much
effort would be required for restoration, allowing
the more effective allocation of resources to other
sites.

Managers and policymakers need quantitative, yet
practical, frameworks that can guide them in
mitigating and reversing the loss of wildlife as urban
development continues. In this paper, I develop one
such framework using as a study system the birds
of Tucson, Arizona, USA. I sought to balance the
best features of existing approaches by adapting a
statistical model that, though it does not explicitly
model biological processes, is nonetheless tailored
to account for them implicitly. The resulting model
incorporates spatial scale, incomplete occupancy of
suitable habitats, and the fact that biological
processes may constrain one another as well as
augment one another. I use the model to address the
questions of whether, and in what manner, species’
spatial distributions are shaped by constraint-like
interactions among spatial scales. Of importance to
practical conservation efforts, the model generates
quantitative predictions of bird occurrence from
habitat variables that are straightforward both to
quantify and to modify within a larger planning
context.

METHODS

Study area

The Tucson metropolitan area encompasses ~1300
km2 in southern Arizona, USA at around 780 m
elevation. Original habitats immediately surrounding
Tucson are predominately upland Sonoran
desertscrub (Brown and Lowe 1980), comprising
various shrubs, trees exhibiting shrub-like growth,
and cacti (Fig. 1a). Several natural reserves to the
west, north, and east of Tucson retain natural
vegetation cover. Developed areas vary, ranging
from mostly natural vegetation (Fig. 1b) to entirely
impervious cover and non-native vegetation (Fig.
1c). Tucson’s population grew 20.1% during the
1990s (United States Census Bureau 2000), while
urbanized land area grew even faster. Stressors to
the surrounding desert ecosystem include

urbanization, aquifer depletion, and surface water
diversion (Nabhan and Holdsworth 1998).

Bird data

To collect bird data for this study, I organized the
Tucson Bird Count (TBC), a monitoring program
in which skilled observers count birds at sites in and
around the Tucson metropolitan area. All observers
met minimum qualifications and were professional
biologists, professional field guides, or birdwatchers
with years of experience. I placed one TBC count
site randomly within each 1 km2 cell of a regular
grid. During the breeding season each spring,
observers counted birds of all species using one 5-
minute point count at each site. To reduce spatial
autocorrelation in observer identity among sites,
observers surveyed “routes” of sites arranged as
linearly as possible rather than surveying clusters
of nearby sites. See Turner (2002, 2003) for full
details of TBC methods. Current distribution maps
of all species are available at www.tucsonbirds.org
.

Most, though not all, TBC sites were visited every
year from 2001–2003. To maximize spatial
coverage while reducing the effects of variation
among sites in number of years visited, I used data
from two randomly selected years for each site, or
one when only one existed). Figure 2 maps the 725
sites surveyed for this study. The current study
focuses on eight species associated primarily with
desertscrub habitats. I extracted presence/absence
data from the total data set with each site counting
once, i.e., a species is scored as present at a site if
counted on either or both years. This produced a
data set of 2794 occurrences of eight species (Table
1).

Environmental data

Several things help to identify factors governing the
occurrence of desertscrub birds. First, their natural
history is fairly well known (see, e.g., Poole and Gill
1992-2002 and references therein). For example,
each of these species needs desertscrub, and native
vegetation can be expected to play a large role in
determining where they occur. Second, previous
research showed the primacy of native vegetation
in determining native bird diversity in human-
dominated landscapes (e.g., Thomas et al. 1977,
Green 1984, see also Germaine et al. 1998). In
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Fig. 1. Example photos showing variation in retention of native vegetation in the Tucson area. (a) nature
reserve, comprising predominantly Sonoran desertscrub vegetation (photographer: Jim Hays). (b) residence
retaining substantial desertscrub cover (photographer: Jim Hays). (c) residence with only non-native
vegetation (photographer: Will Turner).
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Fig. 2. Map of Tucson study area showing roads a gray lines, interstate highways as divided lines, nature
reserves in gray shading, and 725 survey points as dots. Inset shows position of Tucson in western United
States.
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Table 1. Desertscrub study species and overall frequency of occurrence in Tucson Bird Count data. †
Number of sites at which species recorded. ‡ Percent of 725 total sites at which species recorded.

Code Common name Scientific name n† %‡

GIWO Gila Woodpecker Melanerpes uropygialis 580 80.0

CACW Cactus Wren Campylorhynchus brunneicapillus 527 72.7

GAQU Gambel's Quail Callipepla gambelii 479 66.1

CBTH Curve-billed Thrasher Toxostoma curvirostre 418 57.7

VERD Verdin Auriparus flaviceps 393 54.2

ATFL Ash-throated Flycatcher Myiarchus cinerascens 159 21.9

PYRR Pyrrhuloxia Cardinalis sinuatus 128 17.7

GIFL Gilded Flicker Colaptes chrysoides 110 15.2

Tucson, the total volume of native vegetation retains
its status as the strongest correlate of native bird
abundance and diversity, despite variation in
housing density, exotic vegetation, and other factors
(Mills et al. 1989). The present paper seeks more
detailed understanding of the relationship between
birds and native vegetation cover.

I obtained desertscrub vegetation cover data from a
remotely sensed land cover map of the Tucson area
produced at the University of Arizona. An initial set
of land cover classes was generated through
unsupervised classification of 1998 multispectral, i.
e., color and near-infrared, high-resolution, i.e., 1
m2/pixel, aerial photography of the Tucson area.
This was followed by grouping and splitting of
classes and additional supervised classification to
refine land cover classes. The resulting land cover
map comprised 13 land cover classes, e.g.,
structures, roads, turf grass, thick tree canopy,
desertscrub, and was ground-truthed with site visits

and by comparison to finer-resolution, i.e., ~0.1 m2/
pixel, panchromatic imagery. All subsequent
analyses use the ‘desertscrub’ land cover type.

Desertscrub habitat in and around urban areas does
not lend itself to the delineation of patches, as often
used in studies based on island biogeography theory
or patch-based metrics of landscape properties.
First, natural desertscrub is not a closed-canopy
vegetation type. Subshrubs, grass, and bare ground
may intersperse with the densest of desertscrub.
Thus, even in protected areas around Tucson, the
proportion of an area comprising desertscrub
vegetation might not exceed 70%. Second, many
realistic approaches to sustaining nature in urban
areas will include some degree of non-natural
habitat intermingled with natural habitat. The
feasibility of such approaches will certainly vary
among species, but it makes little sense to limit
possible solutions beforehand to contiguous,
uniform patches. I thus modeled the response of bird
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Fig. 3. Maximum likelihood fits of models MLOGISTICshown as a dotted line and MASYMP, a solid line to
Tucson Bird Count data for Gambel’s Quail (GAQU) response to local desertscrub cover, i.e., proportion
of desertscrub cover within 56 m. Open circles: average observed GAQU occurrence in bins of 30 sites
having adjacent desertscrub cover values.
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Table 2. Maximum likelihood parameter estimates and model selection criteria for eight Tucson-area
desertscrub species. See Table 1 for species names. † Akaike Information Criterion. Boldface indicates
models considered to have “substantial empirical support,” i.e., AIC–AICbest ≤ 2. ‡ Lowest AIC value
among models, indicating highest likelihood given the data after penalization for number of parameters. §
Mean area under the receiver operating curve (AUC) based on 10-fold cross-validation of the best model.
MLOGISTIC, MASYMP, MBILOG, and MCONSTRAINT represent the logistic, asymptote, bivariate logistic, and
constraint models, respectively.

AICbest
‡ AUCbest

§ Species AIC†

MLOGISTIC MASYMP MBILOG MCONSTRAINT

340.62 0.702 GIWO 347.62 342.94 349.67 340.62

390.58 0.715 CACW 402.32 394.57 402.92 390.58

358.80 0.801 GAQU 415.33 397.70 408.90 358.80

482.25 0.578 CBTH 487.18 482.25 490.03 485.42

475.05 0.664 VERD 488.57 476.73 492.31 475.05

328.67 0.766 ATFL 333.53 333.07 328.73 328.67

290.79 0.758 PYRR 322.77 307.63 318.76 290.79

265.64 0.798 GIFL 280.53 281.59 265.64 266.85

species to the desertscrub composition of the
landscape surrounding each TBC point, calculated
as the proportion of pixels within a given radius that
are desertscrub.

Modeling species occurrence

This modeling effort seeks to encapsulate the
behavior of the system, i.e., bird response to
desertscrub cover, in a way that aids biological
interpretation and generates quantitative predictions

given a particular landscape. My approach involved
considering several relevant biological features not
generally taken into account by standard statistical
models, while retaining the relative ease with which
one can parameterize such models. To this end,
several considerations serve as a guide for
improving a base model.

Consideration 1: Bird occurrence is a binary
variable, whereas desertscrub cover varies
continuously. Researchers often apply logistic
regression (Trexler and Travis 1993, Hosmer and
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Fig. 4. Maximum likelihood fits of model MCONSTRAINT reveal differences among species in responses to
habitat at different spatial scales. Shown are (a) Gambel’s Quail (GAQU) and (b) Ash-throated Flycatcher
(ATFL), two species for which MCONSTRAINT was the best model. Each line shows the fitted response to
local habitat, i.e., x1, the proportion desertscrub cover within 56 m, for a selected value of landscape habitat
and x2, the proportion desertscrub cover within 1784 m.

Lemeshow 2000) when investigating the
relationship between a binary response variable and
one or more continuous predictor variables. The
logistic response of bird occurrence to desertscrub
cover can be written as a two-parameter model, i.e.,
the “ordinary logistic model, ”

(1)

where MLOGISTIC(x) is the expectation of occurrence
as a function of desertscrub cover x, β varies
horizontal shift, and µ controls the steepness, i.e.,
curvature of logistic response.

Consideration 2: Few species may reach 100%
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Fig. 5. Fitted response surfaces for all 8 desertscrub study species under the best models. Green surfaces
are predictions of the constraint model MCONSTRAINT for each species, and orange surfaces are predictions
of the best model for the two cases in which another model outperformed MCONSTRAINT. Lower-right axis
in each graph: x1, the proportion desertscrub cover within 56 m, i.e., local scale. Lower-left axis: x2,
proportion desertscrub cover within 1784 m, i.e., landscape scale. Vertical axis: per-site occurrence
probability. For visual clarity, vertical axis scaling varies among species according to maximum predicted
occurrence probability. Scaling of two horizontal axes remains constant. Four-letter codes identify species;
see Table 1 for species names. ASYMP and BILOG represent the asymptotic and bivariate logistic models,
respectively.
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observed occurrence. Recording bird occurrence
without error would prove quite expensive, perhaps
impossible. So, using realistic survey methods, we
expect the probability that we observe a species at
a site, given that it is present, to lie below unity.
Moreover, although we should generally expect a
species to occupy suitable habitat, there is little
reason to expect it to occupy all suitable habitat all
the time. This observation is among the fundamental
contributions of metapopulation ecology (Levins
1969, Hanski 1999). With ordinary logistic
regression (Eq. 1), occurrence must asymptote at
unity. Adding an asymptote parameter α results in
the following “asymptote model,” which allows
non-unity occurrence probability in favorable
habitat:

(2)

Consideration 3: Biological processes acting at
multiple spatial scales may influence the presence
of a species at a given location (Johnson 1980,
Wiens 1989, Levin 1992). Ecologists have
increasingly incorporated this consideration into
modeling of organism-environment relationships
for diverse taxa, including plants (Turner et al.
2003), invertebrates (Steffan-Dewenter et al. 2002),
mammals (Schaefer and Messier 1995), and birds
(Pearson 1993, Lichstein et al. 2002). In birds, some
individual-level behavioral and ecological processes
such as nest-site selection and foraging may depend
on features present within a relatively small area.
But other processes, for example pair formation or
population-level processes, may affect the
distribution of birds over larger areas. I thus
computed desertscrub cover at a “landscape” scale,
i.e., 1784 m radius, 10 km2 area, sufficiently large
to accommodate a number of territories of any of
the focal species (Poole and Gill 1992-2002); and a
“local,” scale, i.e., 56 m, 1 ha area, which lies nearer
the area used by single breeding pairs of these
species. Other studies have found factors measured
at scales similar to these two to have significant, yet
differing apparent impacts on bird species
occurrence (e.g., Lichstein et al. 2002, Melles et al.
2003).

Consideration 4: Biological processes do not
necessarily interact additively. Instead, they may

constrain, or enhance, one another. Liebig’s “Law
of the Minimum” first introduced this notion (Liebig
1840, as cited in Odum 1950). Huston  called for
increased attention to the limiting or nonlimiting
nature of all factors involved in ecological studies.
I allowed for the possibility that processes acting at
one scale might constrain the influence of processes
acting at another scale by using the product of two
logistics, described by the following “constraint
model”:

(3)

Ecologists have used similar equations to
investigate species responses to multiple environmental
variables (van Dam et al. 1986, see also Huisman
et al. 1993), but not in a multiscale context. In the
constraint model, x1 and x2 represent desertscrub
cover at local and landscape scales, respectively,
and subscripts on β and µ parameters indicate the
spatial scale to which the parameters correspond.
Because terms in the denominator of Eq. 3 interact
multiplicatively, unfavorable values for either
environmental variable may restrict occurrence
regardless of the value of the other environmental
variable. The extent to which this constraint
behavior occurs, if at all, depends on the particular
values of the β and µ parameters.

I also included a fourth model, a bivariate logistic
with interaction term, in analyses for comparison
with MCONSTRAINT. Multiple logistic regression sees
widespread use in the study of species–environment
relationships (e.g., many chapters in Scott et al.
2002). A potential advantage of this approach is that,
unlike MCONSTRAINT, the bivariate logistic is linear
in its parameters, and thus may be fit using existing
statistical methods under the generalized linear
model (GLM). The bivariate logistic model
(MBILOG) is described as

(4)

where µ3 reflects the strength of the interaction
between spatial scales.

For each species, I estimated parameters for each
model using maximum likelihood methods. I
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assessed the relative fit of each model to data using
the Akaike information criterion (AIC; Akaike
1973). For a given species, the model with the lowest
AIC value is that which is most likely after
penalization for number of parameters. I conducted
all analyses in Matlab v7 (Mathworks 2004).

AIC values allow discrimination of relative
performance among candidate models, yet in
conservation predictive accuracy may be of equal
or greater importance. Receiver operating
characteristic (ROC) curves, used in other fields
since around 1950 but only more recently in ecology
(see, e.g., Fielding and Bell 1997, Boyce et al. 2002
and references therein), are ideally suited for
assessing the predictive accuracy of binary models.
In particular, integrating an ROC curve to obtain the
area under the curve (AUC) provides a statistic with
several important properties (Metz 1978, Swets
1988). Unlike many measures of predictive
accuracy, the AUC value is independent of both the
overall frequency of occurrence and the threshold
probability used for predicting presence. Values of
AUC vary from 0.5, i.e., no better than random, to
1, i.e., perfect prediction. I followed Swets (1988,
see also Boyce et al. 2002) in considering models
with AUC ≥ 0.7 as “useful” applications.

Using the same data to estimate parameters and to
test predictive accuracy may overestimate model
performance. I used k-fold cross-validation
(Fielding and Bell 1997) to assess predictive
accuracy. In k-fold cross-validation, the data are
divided into k roughly equal partitions. One partition
is withheld, and the model is fit to the remaining
data. Predictive accuracy is then assessed by
calculating AUC using only the partition that was
not used in fitting. This procedure is repeated for
each of the k partitions, and the k values are averaged
to obtain that model’s AUC. Each AUC result
hereafter represents the result of k-fold cross-
validation (k = 10).

RESULTS

Asymptotic occurrence

Figure 3 shows observed occurrence data for
Gambel’s Quail as a function of local desertscrub
cover, and fitted responses for both MLOGISTIC and
MASYMP. Visual inspection of this and similar plots
for the other species indicates that the fixed

asymptote of MLOGISTIC model may cause it to fit
poorly, whereas the asymptote model better
captures the behavior of the response function.

Burnham and Anderson (2002:70) suggest that
models with an Akaike information criterion (AIC)
value within 2 of the minimum AIC value should
also be considered as having “substantial” empirical
support. Table 2 reports, for each species, AIC
values for each model and the lowest AIC among
models (AICbest). We can evaluate the applicability
of the asymptote parameter by comparing only
MLOGISTIC and MASYMP. In such a comparison,
MASYMP would best fit the data for seven of eight
species and would have substantial support in all
eight cases, while MLOGISTIC would best fit the data
for one species and would have substantial support
for only two species (Table 2).

Multiple spatial scales

The bivariate logistic (MBILOG) and constraint
(MCONSTRAINT) models included the potentially
interactive effects of desertscrub cover at different
spatial scales. For the models using habitat data from
only one spatial scale (MLOGISTIC and MASYMP), using
only landscape-scale data did not improve fits over
using only local-scale data. Thus, I hereafter show
results for local-scale data only with these two
models. Of the four models, MCONSTRAINT provided
the best fit in nearly all cases, showing lowest AIC
values for six of eight species, and having
substantial support (AIC–AICbest ≤ 2) for seven of
eight (Table 2). Models MASYMP and MBILOG each
fit just one species best and had substantial support
for two species (Table 2).

Table 2 additionally gives mean AUC values, across
10 cross-validation partitions, of the best model for
each species as a measure of overall model
predictive ability. For six of eight species, the best
model showed AUC values ≥ 0.7, indicating useful
applications of that model.

Visualizing occurrence probabilities predicted by
the best models offers insight into how species
respond to habitat at different spatial scales. Figure
4 shows predictions of MCONSTRAINT for two species’
responses to local habitat for select values of
landscape-level habitat. MCONSTRAINT was the best
model for these species. Two-dimensional plots
such as this allow quantitative examination of
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species’ responses. Alternatively, plotting response
surfaces in three dimensions readily enables
comparisons of qualitative patterns in response
among species. Figure 5 shows fitted response
surfaces predicted by the best models for each
species with respect to both local and landscape
desertscrub cover.

DISCUSSION

Asymptotic occurrence

In principle, the asymptote (MASYMP) and constraint
(MCONSTRAINT) models are implicitly tailored to
biological phenomena through judicious, a priori
choice of additional parameters. Evaluation on
Tucson-area desertscrub birds indicates that this
effort was justified: based on the Akaike
information criterion (AIC) model selection values,
MASYMP outperformed MLOGISTIC, and MCONSTRAINT 
outperformed all three other models (Table 2).

That MLOGISTIC showed substantial empirical
support for no species, and MBILOG for only two
species, highlights the inadequacy of these model's
assumption that occurrence must reach 100%. The
best fit of MLOGISTIC clearly mischaracterizes the
response at low and intermediate habitat values as
well as asymptotic ones (Fig. 3). If used in such
cases as this, standard logistic models may result in
erroneous inferences about or predictions of
probability of occurrence. Similar errors may
potentially arise if logistic regression is used to
model occurrence as a function of patch size, a
method employed to estimate minimum area
requirements (e.g., Robbins et al. 1989, Vickery et
al. 1994).

Constraints among spatial scales

Many researchers in recent years have investigated
the influences of multiple spatial scales in
determining species’ spatial distributions (e.g.,
Pearson 1993, McGarigal and McComb 1995,
Schaefer and Messier 1995, Lichstein et al. 2002,
Steffan-Dewenter et al. 2002, Melles et al. 2003,
Turner et al. 2003). However, studies to date seem
not to have investigated the potential for constraint-
like interactions among scales as is done here with
MCONSTRAINT.

MCONSTRAINT provided the best fit to data and had
good predictive accuracy for most species. In the

two cases in which MCONSTRAINT did not have the
lowest Akaike information criterion (AIC) value,
MCONSTRAINT’s reponse surface closely resembles
that of the best-fitting model. Indeed, the reason the
best model in each of these two cases had lowest
AIC values was not because the model fit better, i.
e., had lower negative log-likelihood than
MCONSTRAINT. Rather, these models had lower AIC
values because they fit nearly as well as
MCONSTRAINT but did so with fewer parameters, and
thus incurred lower AIC parameter penalties. This
suggests model MCONSTRAINT may be a useful tool
for interpretation of species’ responses even in some
cases in which it lacks the lowest AIC value.

The variation in response surfaces for best models
for each species (Fig. 5) indicates that species do
not fall neatly into groups that are simply “sensitive”
or “not sensitive” to urban development. Rather,
some species are constrained by habitat at the local
scale only, e.g., Gila Woodpecker, Curve-billed
Thrasher, some by the landscape scale only, e.g.,
Gilded Flicker, and others by both scales, e.g.,
Cactus Wren, Gambel’s Quail, Verdin, Ash-
throated Flycatcher, Pyrrhuloxia. Within these
categories, species vary in their sensitivity, i.e., the
abruptness of their response to habitat cover.

Several features of response surfaces (Fig. 5) have
straightforward biological interpretations. One
feature common to nearly all species is a downturn
in occurrence at the lowest local cover values. Only
one species, Gilded Flicker, does not show this
pattern. These findings are consistent with the
biology of the species: most desertscrub species
rarely occur in golf fairways or other areas with little
local desertscrub cover. But flickers are an
exception, routinely using open ground and
turfgrass in foraging for invertebrates. Given the
right landscape, this makes them more likely than
other species to be found at sites with little local
habitat.

Several species show abrupt changes in occurrence
at low landscape cover. For example, once
landscape cover reaches a minimum level of
10-15%, Gambel’s Quail occur frequently, at up to
89% of sites (Figs. 4 and 5). However, below this
minimum, quail occurrence quickly drops to almost
0, regardless of local cover. Species with steep
changes with respect to landscape cover vary in
occurrence on either side of the change, and in the
position of the change along the landscape axis, e.
g., Pyrrhuloxia require slightly more landscape
cover; Verdins slightly less (Fig. 5). However, the
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message of constraint is clear: for species with such
steep changes, no amount of compensation in
desertscrub cover at the local scale can overcome
the limitations of a poor landscape.

This result has several implications for conservation
and planning. Creating large, contiguous areas of
natural habitat within existing urban areas may
prove difficult. Thus, more realistic opportunities
for urban conservation likely will include some
degree of development intermingled with natural
habitat. But could such landscapes actually sustain
native species? Consider species such as Gambel’s
Quail and Pyrrhuloxia, whose abrupt responses in
Fig. 5 indicate they are indeed sensitive to habitat
cover. These species require a greater proportion of
habitat cover, at both scales, than now exists in much
of Tucson, where mean desertscrub cover of the
central 200 km2 is 5.8%. However, the habitat cover
required for these species to approach natural
occurrence rates are relatively low, i.e., roughly
10-15%. Thus, although these two species are
currently rare in central Tucson, their restoration to
Tucson’s developed areas may be possible where
desertscrub cover can be raised to a modest 10-15%
at both local and landscape scales. Such levels may
be attainable with habitat restoration in private
yards, gardens, and public spaces such as parks and
rights-of-way. Due to the interactions among scales,
this restoration must take place at several spatial
scales. In particular, large areas of contiguous
desertscrub may harbor these species, but they are
unlikely to occur in nearby urban sites if local habitat
is insufficient. Similarly, any local restoration
attempts will meet little success without ensuring
adequate habitat at the landscape scale.

If implemented, restoration of additional native
species to the developed parts of urban areas could
provide several benefits. In a broad conservation
sense, restoring native species to developed areas
would complement the creation of protected areas
to increase the overall habitat available for living
things (Rosenzweig et al. 2003). Moreover, this
restoration to developed areas would bring native
species to the areas in which most of Tucson’s
residents live, increasing opportunities for people
to benefit from or develop an appreciation of nature
(Turner et al. 2004).

Although some species might be fairly easy to
restore to or sustain in developed areas, results of
the best models suggest others species need larger
areas and/or lower-density development to persist.

Gilded Flicker and Ash-throated Flycatcher both
require high cover at the landscape scale, i.e.,
30-50% or more (Fig. 5), an amount of habitat
incompatible with many urban human land uses.
Conservation efforts for species such as these could
be more effectively allocated elsewhere, e.g., less-
developed areas or large preserves.

It is important to recognize limitations of the
modeling approach used here. The potential for
constraint-like interactions among spatial scales is
likely to be broadly applicable to other locations,
contexts, e.g., urban locations and other landscapes,
and taxa. However, parameter estimates for
particular species should not be assumed to apply
elsewhere without external validation. Biotic and
abiotic properties of urban landscapes, as well as
ecology and behavior of the focal species, their
competitors, and predators may vary among
locations.

CONCLUSION

MASYMP and MCONSTRAINT model relevant factors
implicitly rather than explicitly, operating under the
assumption that a judiciously chosen, reduced set
of variables can act as effective surrogates for
biological processes. The simplifying nature of this
assumption eases parameterization in comparison
with more process-based models, and relies on data,
e.g., occurrence, obtainable with relatively modest
effort. MCONSTRAINT, in particular, by allowing for
the possibility that factors at different scales
constrain one another, provides insights into
biological phenomena not addressed by conventional
statistical approaches. These insights are useful for
understanding the distribution of species in complex
urban environments, and offer improved predictive
ability for evaluating alternative future scenarios for
sustaining biodiversity in urban landscapes. Given
the observed differences among species, and the
intense competing human uses of urban lands, the
best models for each species should be used to
predict distributions under alternative future
development or restoration scenarios. Mapped
predictions of these models in planned scenarios
would reveal whether particular alternatives include
sufficient habitat at relevant spatial scales for each
species.
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